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INTRODUCTION

Lung auscultation is the most important of the four cornerstones of
pulmonary system examination. The stethoscope has become ubiquitous in
healthcare settings for over 200 years, yet some shortcomings of subjectivity
and noise plague it [1-3].

Additionally, the levels of cardiopulmonary auscultation have decreased
in recent years. Whilst third leading cause of death across the world remains
pulmonary diseases [4—7].

Though science and engineering has not stood still and for decades
electronic stethoscopes (el. stethoscopes) were being developed [8]. This
allowed computer-aided auscultation to develop [9].

More recent rapid advancements in processing compute power on the
back of Moor’s Law with improved mathematical models has meant ever
increasing breakthroughs and application of machine learning (ML) tools
towards diagnostic field [10—13].

The synergic combination of electronic stethoscopes with artificial intel-
ligence (Al), more specifically ML models are arisen as potential solution to
improve lung auscultation diagnostic accuracy [6].

Yet there very few articles that compares human subjects’ accuracy
across large number of ML.

Therefore, a pivotal question when physician should seek ML assistance
under varying noise conditions cannot be answered. Without Answering
integration of these tools is problematic and can cause more problems than
solutions it’s going to resolve.

Furthermore, not all lung sounds are alike. There are two main types of
auscultation sounds: normal (NAS) and pathological. Pathological ausculta-
tion sounds can be continuous (CAS) and discontinuous (DAS). The DAS’
properties are heard as fine and coarse crackles, and CAS are audible as
wheezes and bronchus sounds to the examiner’s ear. The typical properties
of CAS are typically 80 to 1600 Hz, lasting more than 250 ms, and are
associated with asthma and chronic obstructive pulmonary diseases. DAS are
shorter, typically less than 20 ms in duration, with a wide frequency range
from 100 to 2000 Hz, and are associated with congestive heart failure (HF)
and pneumonia [14].



This thesis delves deep into supervise ML models’ ability to identify
three different classes of lung sounds under three different levels of ambient
noise and compares confusion matrices precision-recall (PR), receiver ope-
rating characteristic (ROC) parameters under a scrutiny of statical validation
of these models to human subjects’ ability, whilst utilising same proprietary
dataset.

The wealth of knowledge generated by this work aim to contribute
towards advancing knowledge of cost effective, no invasive, point-of-care
into the future that has potential to expand into field of ambulatory respiratory
health monitoring arena [15-17].
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1. AIM AND OBJECTIVES OF THE STUDY

1.1. Main aim

To evaluate and compare the diagnostic accuracy of machine learning
models and medical students after training on proprietary data to identify
correctly three classes of lung sounds under three different levels of Gaussian
white noise (GWN).

1.2. Objectives

1. To train and evaluate machine learning models’ and medical stu-
dents’ ability to identify three classes of lung sounds under different
levels of GWN.

2. To evaluate the influence of spectrogram and scalogram on 12
different supervised ML models’ ability to accurately identify diffe-
rent classes of lung sounds.

3. To compare the ability of machine learning models and medical
students to identify three classes of lung sounds under three different
levels of GWN utilising key diagnostic metric.

4. To identify the potential of machine learning model to function as
diagnostic assistant under GWN conditions for three main classes of
lung sounds.
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2. RELEVANCE, NOVELTY AND SIGNIFICANCE
OF THE RESEARCH WORK

2.1. Relevance of the research work

Stethoscopes have existed for over 205 years [18]. The use of stethosc-
opes has allowed auscultation of the sounds produced by the body, though
exact mechanism is still poorly understood due to lack of standardisation and
subjectivity of the stethoscopes use [19]. These sounds can change due to
pathologies ranging from gastroenterological, cardiovascular, renal or pulmo-
nary in nature [20—23]. Stethoscope is particularity important in cardiopulmo-
nary screening and this research work will look specifically and lung sounds.
The pulmonary sounds associated with pathologies (adventitious lung sounds)
assist physicians in preliminary diagnosis and decision-making regarding
further tests and treatment the patient might need [23, 24].

Regrettably, there has been a noticeable decline in the practice of auscul-
tation in recent times, posing a potential threat to the quality of patient care
[5, 25].

Additional auscultation depends on a relatively quiet room. However,
increased noise levels in healthcare settings can pose another challenge for
effective lung sound auscultation [26].

Yet auscultation remains a cornerstone of preliminary primary cardiopul-
monary examination and is extremely widely used in clinical settings [27].
Therefore, any diagnostic improvement in stethoscope accuracy, specificity,
and sensitivity to identify lung sounds can lead to more exact diagnoses and
better patient treatment [28]. Whilst lung diseases remains a third leading
cause world wide [7]. Hence any improvement in pulmonary auscultation can
lead to great positive impact on patients’ health worldwide.

Recent developments in artificial intelligence (Al), combined with elect-
ronic stethoscopes, created conditions to gather data to train ML to standar-
dise auscultation [29]. Therefore, this seems to be an answer in the current
environment.

However, the robustness of human subjects or organic intelligence (OI)
compared to ML models using the same lung sound datasets under standar-
dised ambient noise pollution conditions has not been investigated. This is
especially relevant as medicine seeks to integrate ML models to assist deci-
sion-making while diagnosing lung diseases in patients in real life settings
healthcare sector.
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2.2. Novelty of the research work

The research project is not only unique to Baltic region, but in is one of
the kind to compare human subjects and machine learning models in
identifying three classes of lung sounds under three levels of GWN.

Currently, there are no studies that compared 12 ML models to human
subjects using lung sounds from the same datasets.

The research that exists on human subjects’ ability to identify lung
sounds under different noise level conditions is seldom.

The research articles that investigated the ambient noise effect on ML
models’ accuracy are seldom and some are over a decade old, whilst during
this time ML models have been advancing and new tools are available and
not yet tested under aforementioned conditions. Therefor it is not by utilising
several different models and two sound representations it is possible to add
novel insights which models could be the most robust to noise impact and
their applicability in decision support tools’ development.

The research on human subject is also sparse, over 5 years old and
performed in various environments or on paediatric patients [30, 31].

Research articles even have contradictory conclusions, such as that most
examiners’ ability to hear heart and lung sounds is not significantly impacted
by extreme loudness found in emergency departments [31].

A review article by Wallis Rory in 2019 concluded measurement of envi-
ronmental white noise levels in hospitals are inconsistent and poorly reported
[32]. The above aforementioned factors make it hard to test hypotheses by
replicating methodology. Therefore, application of GWN utilisation as stan-
dardised ambient noise that covers all frequencies equally to compare human
subject and ML models with same dataset is another first.

Whilst research that focuses on ML under different ambient noise condi-
tions are also very few and three articles can be uncovered in literature review
[10, 30, 33].

Additional, some studies do not even have statistically significant number
of data point to perform statistical analysis [10].

Therefore, the combination of use of latest ML models, GWN ambient
noise at three different levels and comparison to human subjects’ ability
whilst utilising same dataset makes is research absolutely unique.
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2.3. The application of scientific work

The study shows the statistical and clinical significance improvement of
training ML models and medical students to identify three main classes of
lung sound (NAS, CAS, DAS). Furthermore, the study shows an impact of
GWN on the DAS class of lung sounds, indicating that noise levels could
significantly affect the ability to screen pathologies associated with these lung
sounds, such as HF and pneumonia. Especially in light of the fact that even
though WHO recommends hospitals to be around 35 dB they are usually
much lauder and values can range at day time from 37 to 88.6 dB [26].

This suggests the need to include noise in improving the auscultation
accuracy of healthcare workers and ML models. This is crucial for maintai-
ning the importance of this non-invasive, widely available, easy-to-perform,
low-cost stethoscope as a pillar of objective screening in a clinical setting.
Understanding and accounting for noise could significantly enhance the
effectiveness of lung sound identification.

Therefore, all future healthcare workers and ML should be assessed
under WN conditions to evaluate the robustness of auscultation accuracy,
specificity and sensitivity in screening for adventitious lung sounds in a
clinical setting. This is especially important if future medical staff use ML in
Al-powered clinical decision support [34].
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3. LITERATURE REVIEW

3.1. Lung auscultation

3.1.1. Definition and description of lung auscultation and general
introduction

Lung auscultation is a critical clinical tool used to assess respiratory
health by detecting sounds generated during breathing [35]. These sounds,
traditionally classified into normal and adventitious, provide valuable
insights into a variety of respiratory and systemic conditions. Adventitious
sounds such as wheezes, crackles, and pleural rubs are commonly associated
with specific pathologies, making their detection crucial for diagnosing di-
seases like chronic obstructive pulmonary disease (COPD), pneumonia, heart
failure (HF), asthma, hydrothorax, and renal failure and chronic kidney di-
sease (CKD) [36-38]. Each of these conditions presents with characteristic
lung sounds that guide clinical first line decision-making [28, 39].

For instance, in COPD and asthma, wheezes — continuous, high-pitched
sounds — are often heard due to airway obstruction [40]. In contrast, disconti-
nuous sounds like crackles are typically found in patients with conditions
such as pneumonia, HF, and hydrothorax, where fluid or inflammation affects
lung tissue [41]. Fine crackles, commonly present in HF, are associated with
alveolar fluid build-up, while coarse crackles may suggest conditions like
pneumonia [41]. In renal failure, fluid overload can similarly cause fine or
coarse crackles, depending on the severity of the pulmonary involvement.

Despite the clinical importance of correctly identifying adventitious lung
sounds, noise pollution frequently interferes with the accuracy of lung sound
detection [42, 43]. Both environmental noise, such as conversations and
equipment noise, stethoscope membrane rubbing on the skin and internal
bioorganic internal noise, can obscure important auscultatory findings [44—
46]. This interference can make it difficult to distinguish between normal
breath sounds and the pathological adventitious sounds that are key to identi-
fying diseases like HF or pneumonia [46].

Given the reliance on the stethoscope for primary screening of lung pa-
thologies and its ubiquitous use equipment, whilst at the same time extremely
poorly utilisation can lead to misdiagnosis, especially in a noisy healthcare
settings [47, 48]. This literature review aims to examine the classification of
lung sounds in relation to specific pathologies and explore the effects of noise
pollution on auscultation ability of human subjects and introduce exploration
of various ML models as potential solutions.
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3.1.2. Lung sound classification

The lung can be classified into normal and abnormal (adventitious lung
sounds).

Normal lung sounds can be further divided by their sound qualities and
locations: tracheal, vesicular sounds, bronchial, bronchovesicular [49].

Tracheal breath sounds are characterised by their high pitch and loud-
ness, with a hollow quality. They are most audible in the neck area. Vesicular
sounds are primarily heard over the peripheral lung fields, especially over the
lung bases posteriorly and laterally on both sides of the chest. The sound
quality is soft, low-pitched, and rustling, with the inspiration phase being
longer than the expiration.

Bronchial sounds are primarily heard over the trachea and near the
manubrium of the sternum. They are characterised by loud, high-pitched, and
tubular, with expiration often louder and longer than inspiration.

Bronchovesicular sounds are heard in the first and second intercostal
spaces anteriorly and between the scapulae posteriorly, where the bronchi are
close to the chest wall. The bronchovesicular sounds are a mixture of
bronchial and vesicular, with inspiration and expiration almost equal in length
and intensity [50].

These lung sounds are normal if they are heard in their normal location.
However, if, for example, the bronchial sound is heard where only vesicular
sound should be audible, this can be a sign of pathology.

The adventitious lung sounds can be classified into two broad groups:
continuous and discontinuous [51]. Continuous auscultated sounds, such as
wheezes, rhonchi, and stridor, are characterised by a musical quality and are
typically associated with airway obstruction. These sounds can vary in pitch
and duration, often lasting over 250 ms.

Discontinuous auscultated sounds, such as crackles or rales, are non-
musical and characterised by brief, intermittent sounds typically lasting less
than 20 ms [52].

Sadly, inconsistency persists in terminology, and even in English lite-
rature, “crackles” and “rales” are used interchangeably by pulmonary phy-
sicians.

The discontinuous lung sounds have a very broad range of frequencies,
and in combination with their short duration, poorer identification of these
sounds by healthcare workers as compared to continuous lung sounds.
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Another example of inconsistency has been historical concerning conti-
nuous lung sounds with the terms like “wheeze” and “rhonchus” sometimes
used interchangeably [53]. Therefore, even though the research will use the
current definitions of normal, continuous and discontinuous lung sounds, it is
important to understand that these terms are quite broad.

3.1.3. Adventitious lung sounds and associated pathologies
epidemiology

Continuous lung sounds are associated with pathologies such as asthma
and chronic obstructive pulmonary disease (COPD) [54].

Discontinuous lung sounds are often associated with conditions like
pneumonia and HF, crackles (a type of discontinuous lung sound) can be
found in early onset of COPD [54, 55].

3.1.4. Current diagnostic accuracy of physicians and AI models
the stethoscope according to lung sound classes

The sensitivity and specificity for three classes of lung sounds vary quite
significantly between Al models and physicians.

The sensitivity is poor, and specificity is suitable for normal (NAS) lung
sound detection by physicians and Al models. CAS sounds like wheezing are
much easier to detect for physicians and Al models with good sensitivity and
specificity.

Finally, DAS lung sound detections by both AI and physicians have
shown good sensitivities but poor specificity [56].

3.2. Machine learning models

3.2.1. Machine learning model definition and description

Machine learning (ML) models are algorithms that can trained on data to
make correction decisions [57, 58]. ML models involve three main steps;
training, validation and testing. The classical ML models can be categorised
into two broad groups supervised learning and unsupervised learning [56]. In
the latter group, an ML model tries to find structure in the data by itself via
clustering or dimensionality reduction. Supervised models work on usually
human-labelled data that allows the ML to know the target at the start of
training; this type of method is very taxing on human resources and can have
mislabel data; however, with well-prepared data, which is of paramount
importance, it can lead to highly accurate models [59, 60].
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3.2.2. Supervised machine learning model types

The main focus the thesis is to evaluate the performance of 12 supervised
ML models compared to human subjects in recognising three classes of lung
sounds under three levels of GWN.

Though there are a significant number of ML models that can be used to
for lung sound analysis we will discuss the most commonly used.

Logistic Regression (LR) is one of the simplest models, Logistic
Regression can still be very effective for binary classification problems [61].
Though for situations that needs model to classify outcomes into three or
more categories a multinomial Logistic Regression can be applied.

Support Vector Machiness (SVM) is a classifier that finds an optimal
hyperplane that separates different classes. Features such as spectral content
or temporal characteristics of lung sounds are used for effective classification.
This method has been has been widely use and achieved reasonable diag-
nostic accuracy of in a number of studies [62, 63].

K-Nearest Neighbors (KNN) is a type of instance-based learning, or lazy
learning, where the function is only approximated locally and all computation
is deferred until classification. The model was previously utilised in pulmo-
nary sound research [64].

Random Forest (RF) is ensemble learning method uses multiple decision
trees to classify data. For lung sound recognition, Random Forest can provide
robust predictions by averaging multiple tree outcomes, reducing overfitting
and handling noise in data effectively [65].

Extra Trees or Extremely Randomised Trees (ET) is an ensemble ML
model that combines extensive number of different trees in similar fashion to
RF but with additional randomisation. The ET has an advantage of working
well with high dimensionality which can come in forefront whilst working
with lung sounds. Though major drawback that this model has as we step
away from simpler model such as RF it gets harder to understand why it
works well or does not, so transparency is reduced and becomes less inter-
pretable. This model has been used in categorising non speech sounds signals
into seven different classes — breath, cough, cry laugh, sneeze, and yawn [66].

Extreme Gradient Boosting classifier (XGBoost) is a more sophisticated
ensemble learning model than Random Forest. It belongs to family of gradient
boosting algorithms [67]. The model has been successfully utilised in
previous studies [68, 69].
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Gradient Boosting (GB) or Gradient Boosting Machine is another ensemb-
le learning model. GB produced a prediction model in the form of an ensemb-
le of weak prediction models, typically decision trees. The main parameters
that require fine tuning in this model are number of trees, maximum
interaction between the independent variables and learning rate (shrinkage)
[70]. The main advantage’s is high accuracy and suitability with complex
pattern recognition. The disadvantage is it is prone to overfitting especially if
model is note fine-tuned.

Light Gradient Boosting Machine (LightGBM) in contrast to horizontal
growth in XGBoost it carries out vertical growth that can reduce loss reduc-
tion and can lead to higher diagnostic accuracy. It is also fast and efficient,
though this is more important in larger datasets. It works well with categorical
data which can be advantageous with pulmonary long sounds. Though it
suffers from overfitting. Research shows successful application of LightGBM
in lung sound recognition using ICBHI-2017 database [71].

Categorical data Gradient Boosting (CatBoost) is an algorithm for
gradient boosting on decision trees. The main advantages is its robustness to
overfitting and applicability to work with categorical features. The previous
research has shown to be more accurate than LightGBM and XGBoost [67].

Adaptive Boosting (AdaBoost) is also an ensemble learning method, it
works by combining many weak classifiers into a single strong one. It shown
to be less prone to overfitting which can be of benefit with lung sounds
identification [72]. Though AdaBoost is sensitive to noisy data, outliers, data
imbalance can cause a drop in performance [73]. It has been successfully
utilised in lung sound classification [68].

Histogram-based Gradient Boosting Classification Tree (Histgradient) is
another type of ensemble learning algorithm that builds tree models
sequentially, with each new tree focusing on correcting the prediction errors
of the previous trees in the ensemble. Histgradient has shown to have great
robustness when it comes to concern of missing data in datasets, though it can
be fidgety and requires optimisation through fine tuning and takes time to
acquire most out of the model in terms of diagnostic accuracy. Histgradient
has been utilised in emotion recognition from speech pattern changes by
Nasifa T. Ira [74]. Therefore, this model holds a great potential in our
research.

19



Multilayer Perceptron (MLP) is a neural network that is based on
universal approximators. The network is created of components called nodes
(neurons) otherwise known as perceptrons. The MLP classifier effectively
models complex non-linear relationships, making it well-suited for capturing
the intricacies of lung sounds. Though it requires a larger amount of data as
before mentioned models, yet it has a lot of potential and will be a good
reference point. Additionally, it has been used in previous research. MLP
have demonstrated high accuracy in lung sound recognition tasks. For
instance, MLP ML model achieved an accuracy of 99.22% on a publicly
available respiratory sounds dataset, outperforming other machine learning
classifiers [75].

3.2.3. Ambient noise and ML models

Several research studies have been performed on applying ML models in
identifying lung sounds with different pathologies. However, they have been
mostly done without adding white noise (WN). Few studies investigated
various types of WN impact on lung sound recognition by human subjects or
ML models utilising ambient noise ranging from ambulance car, babble
noise, Gaussian white noise (GWN), background talking, crying, electronic,
interference and artefacts produced by intentional, unintentional stethoscope
displacements. Only three articles analyse specifically the impacts of WN on
ML models' ability to classify lung sounds correctly in two research articles,
the first by Gwo-Ching Chang and Yi-Ping and the second paper by Cheng
Gwo-Ching Chang and Yung-Fa Lai [10, 33].

The third research article by Dimitra Emmanouilidou and SVM classifier
concluded that the model was overwhelmed by background noises containing
a weaker interference component and transient bursts of audio energy led to
added confusion to the classification [76]. Results were summarised in Table
3.2.3.1 below.
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3.2.4. Lung sound representations

The lung sounds can be directly processed by machine learning models,
though previous research shows that best results are obtained by extracting
features from the representations and using this datasets to train the models
[79]. The two main representations that can be used for visualisation and
extraction of a biological audio signal are spectrograms and scalograms. ML
models mainly use spectrograms [80]. However prior research indicates that
scalogram’s using the Wavelet function compared to Fourier transformation
in spectrograms can localise representation of time and frequency in a better
fashion, hence, leading to better ML model accuracy [81].

Though, it is worth mentioning that machine learning models most
commonly utilise spectrograms. Scalograms, therefore, might require more
fine tuning or even bigger datasets to produce similar or superior diagnostic
results, whilst using same data.

An illustration bellow shows representations of three main classes of
lung sounds that our research project will focus on (Fig. 3.2.4.1).

Healthy lung sounds Continuous, Wheezes Discontinuous, Crackles

Fig. 3.2.4.1. Illustration two types of representations of lung sounds
(scalogram and spectrogram) for normal (healthy), and pathological
(continuous and discontinuous lungs sounds)
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3.3. Ambient noise

3.3.1. Background noise definition, description and impact on
auscultation accuracy

Ambient noise, in our case, is any sound other than lung sounds. They
can be caused by background talking, stethoscope movement [82]. This type
of noise reduces physicians' or machine learning models' ability to
discriminate between different classes and types of lung sounds. Therefore,
reduces the overall accuracy of the stethoscope as a diagnostic tool [83].

3.3.2. Background noise types and levels in healthcare settings

Background noise can have extracorporeal and intracorporeal origins and
can be organic or inorganic in nature. The internal organic background noise
is biological sounds in source, such as, heart sounds, active peristalsis, patient
starting to talk or cough during auscultation process.

The external factors can be organic and inorganic in nature. The organic
external nature sounds can be healthcare staff, children crying, other patients
having a conversation in the corridor. An external inorganic sounds can be
trollies, ambulance car or medical equipment sounds. Additionally, noise can
be produced by chest piece of the stetscopes (diaphragm) rubbing against dry
skin or hairs of the body [84].

The prior research has used several type of noise, babble, emergency
room noise, ambulance vehicles, fake crackles produce by membrane, Mili-
tary equipment helicopters and Gaussian white noise (GWN) [77, 85-87].
From the above-mentioned, ambient sounds used in research, GWN stands
out as it is not only the only synthetic noise but also an ideal candidate for the
sonic pollution impact of lung sound identification, as it pollutes each
frequency evenly. Hence, even though it is synthetic, it can provide a great
baseline to evaluate human and machine learning models' accuracy before
moving to more specific sounds that could be applicable at particular settings,
such as ambulance sirens, conversation or helicopter blades spinning.

Therefore, GWN assist in achieving standardisation of noise pollution
across all frequencies evenly in our methodology.
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3.4. Human subjects selection for the study

The auscultation is still usually performed inside hospitals by physicians,
nurses, resident doctors, medical nurse and medical students. The main two
reasons why acoustic stethoscopes are still preferred to electronic stethosco-
pes (el. stethoscopes) are due to costs, and synthetic sounds transmitted by
variety of el. stethoscopes, whilst not showing clear advantages in diagnosing
pathologies [88]. Physicians could be potentially used in the study to identify
lung sounds, though, there are several factors that do not make them ideal
candidate. First of all, physicians are trained already to identify lung sounds,
they have different work hours, are different ages and with age there is an
increased risk of hearing impairment that would need to be accounted in the
study [89]. The study needs motivated human subjects, that have no prior
auscultation skills, but are willing to learn the lung sounds, and in large
enough numbers. Hence, medical students are ideal subjects for this type of
study.

Previous study shows, though students diagnostic accuracy is lower than
physicians, it follows similar pattern where both physicians and medical
students have lower ability to identify crackles (DAS class of lung sounds)
compared to wheezes (CAS class of lung sounds) therefore, results can provi-
de as with inference in understanding how physicians and nurses could be
affected too [90].

3.5. Studies examining impact of ambient noise on
human subjects ability to accurately auscultate

There are only a few studies examining impact of ambient noise on
human subjects ability to accurately auscultate. The first study by Peitao Ye
in 2022, assesses 56 participants’ ability to correctly identify a discontinuous
class of lung sound, whilst auscultating in the presence of fake crackles [86].
The fake crackles are generated when the stethoscope membrane glides over
the skin. The article concludes that these crackles can lead to misdiagnosis.

A review paper by Jun J. Seah in 2023, primarily focuses on the advan-
cements of stethoscopes in auscultation. While it acknowledges the impact of
extreme noise in disaster zones, chaotic situations, and helicopters it falls
short of providing detailed insights into the effects of different classes of
respiratory lung sounds, leaving a gap in our understanding of white noise’s
influence on auscultation, especially in medium levels of ambient noise that
are experience inside hospitals [91].
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Further literature investigation on topic of ambient noise effects on
human subjects’ ability to auscultate revealed only two more older articles
focusing on specific ambient noise. The first by Steven Gaydos in 2011
looked at military helicopter’s spinning blades and concluded that extreme
noise produced in-flight makes pulmonary auscultation a futile endeavour
[92]. A more applicable research to civilian settings was performed by Jorg
D. Leuppi in 2005 research on 137 patients (though only male), showed low
value of the stethoscope in a noisy emergency reception (ER) as a diagnostic
tool, but at the same time surrounding ambient noise did not impact final
diagnosis. Nonetheless, the article concluded that normal lung auscultation
results are a valuable predictor for not having a lung or heart disease. In
contrast, wheezing was a predictor of having a lung disease [93].

These studies are not satisfactory enough to understand at what levels the
ambient sound will start influencing the auscultator's ability to classify lung
sounds correctly. Therefore, it emphasises the importance of standardised
conditions, with set noise self-pollution at exact signal-to-noise ratios (SNR).
The literature review was summarised in Table 3.5.1.
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4. RESEARCH METHODOLOGY

4.1. Study design, study location, inclusion and exclusion criteria

Prospective study carried out in Lithuania in 2020-2024.

Study subjects: Patients hospitalized with adventitious lung sounds and
diagnoses confirmed for pneumonia, HF, COPD, asthma, kidney failure or
CKD, hydrothorax. Patients were diagnosed according to international
protocols [95-104].

Location of the study for lung sound collection and medical student
enrolment: the study was conducted in the Cardiology and Internal Medicine
Diagnostic Departments of Lithuanian University of Health Sciences Kaunas
Hospital (Josvainiy 2 and Hipodromo 13 Kaunas).

The total inpatient bed fund in 2020 was 1,620 beds. Forty-two thousand
sixty-four patients were treated. During the pre-pandemic period (2019), the
hospital provided about 60,000 inpatient healthcare services, and this number
is projected to return post-pandemic [105].

Partial research was performed in collaboration with Prof. Evaldas Vai-
Ciukynas and his colleagues from Kaunas Technology University (KTU),
with sponsorship from the education and research funds of Kaunas University
of Technology (Grant No. PP2023/39/4) and Lithuanian University of Health
Sciences.

Inclusion criteria for lung sounds recording:

1. patient diagnosed with pneumonia;

patient diagnosed with asthma;

patient diagnosed with heart failure;

patient diagnosed with kidney failure;

patient diagnosed with COPD exacerbation;

patient has adventitious lung sounds;

patient 18 years or older;

patient with no mental disorder;

the patient was conscious and able to answer questions correctly;

0. the patient has signed the personal information form (PIF) and the
informed consent form (ICF).

i i Al

Inclusion criteria for medical students:

1. LSMU medical students in their second or third year;

2. participants 18 years or older;

3. medical students that have no prior experience with auscultation and
agree to participate by signing ICF.
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Exclusion criteria for lung sounds recording:

1. patients that refused to participate in the study;

2. patients who could not speak Lithuanian and provide consent;

3. patient that could not stand, sit still for auscultation to be performed.

Exclusion criteria for medical students:

1. students with hearing impairment or loss;

2. students over 40-year-old;

3. students that did not sign the consent forms.

4.2. Study sample size calculation

The sample size for the lung sounds recordings and the medical students
was calculated using G*Power software (ver. 3.1.9.4; Heinrich-Heine-
Universitit Diisseldorf, Diisseldorf, Germany) [106, 107].

Due to a lack of studies, the sample size calculations for the medical
students were based on a proprietary pilot study. The software utilised the
following settings to calculate the means: Wilcoxon signed-rank test
(matched pairs) function. The following assumptions were applied: power
(1 — B error probability) at 0.95 and an o error probability of 0.05. The effect
size (Cohen dz) from the pilot study was 0.61, based on pre-and post-training
means and standard deviations (SD) of 4.80 + 0.49 and 5.07 + 0.36, respecti-
vely. These values were inputted into the function, resulting in a sample size
of 33 subjects. The pilot study had an attrition rate of 30%. Therefore,
accounting for attrition, the total number of subjects required was 48.

The sample size for lung sounds recordings was calculated based on the
assumption of the effect size to be 0.50, power (1 — error probability) at
0.95 and an a error probability of 0.05, with the number of groups set at 3.
The G*Power software (ver. 3.1.9.4; Heinrich-Heine-Universitédt Diisseldorf,
Diisseldorf, Germany) function was set at ANOVA: fixed effect. The input
resulted in the value of 85 subjects (including the control). The recording of
lung sounds had to undergo a double-blind review, assuming that the
screening group was out of around 30%, which means that around 122
subjects needed to be enrolled in the study.

4.3. Study enrolment methodology

Individuals who agreed to participate in the study were briefed and
signed the PIF and ICF. During the study, data were collected according to
the patient survey questionnaire (see Annex 1). All subject data was gathered
by doctoral student. All subject medical data was coded and accessible only
to the principal investigator (doctoral student).
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4.4. Pulmonary sound recording

A 3M™ Littmann® CORE digital stethoscope (3M Company, St Paul,
Minnesota, United States), Microsoft®, Windows® 10 Operating System
software (Microsoft Corporation, Redmond, Washington, United States)
based HP ProBook 450 G4 (HP Inc., Palo Alto, California, United States)
Intel® Core™ i5 i5-7200U (Intel Corporation, Santa Clara, California, United
States) laptop was used to store audio files via 3M™ Littmann® StethAssist-
1.3.230 (3M Company, St. Paul, Minnesota, United States) software.

The auscultation sound recordings were performed over approximately
three months. The electronic stethoscope settings were as follows: mode was
set to the diaphragm, and sound amplification was set to level 3 (the implica-
tion is up to level 9). The investigator performed the recordings in the wards,
usually containing 2 to 4 patients. All patients were in stable condition and
treated in the department for their underlying disorders. Patients with panc-
reatitis or severe hypertension were primarily the sources for normal lung
sound recordings. Patients with pathological lung sounds were diagnosed and
being treated for: Pneumonia, COPD, Asthma, HF, Hydrothorax, CKD.
When the noise levels rose to hinder auscultation due to reasons such as a
trolley passing, the nurse entered the room, the lung sound was rerecorded.
Audio recordings were 15 s long each and stored in a waveform audio file
format (WAYV). Six recordings for each patient were performed from the back
of the chest (Fig. 4.4.1).

Left Right

Fig. 4.4.1. Illustration with six sites on the back of the chest
where the 15 s lung sounds were recorded from
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4.5. Lung sound processing

In a double-masked review, a team of family and internal medicine
physicians assessed the quality of the sounds and whether they were normal
or pathological in nature. The quality of the sound recording was rated:
“audible” or “inaudible” for training and assessing ML models. The internal
and family doctors independently had to agree on the sound being “audible”
and their type and class so that they could be included in the respiratory
sounds database. Medical specialists reviewed lung sounds using the same
Sennheiser HD 560S headphones (Sennheiser Electronic GmbH & Co. KG,
Wedermark, Germany).

Of the 124 subjects and 744 recordings, only 250 recordings were suit-
able for ML models: 130 recordings for NAS, 70 for CAS and 50 for DAS.
The sound descriptions and WAV files were securely stored in an encrypted
Microsoft® Excel® (Microsoft Corporation, Redmond, Washington, United
States) software database and audio folder, respectively. This database only
contained essential patient information: age, gender, clinical diagnosis, audio
file name and lung sound description. The data was held on the Internal Medi-
cine Clinic’s password-locked laptop, ensuring its safety and confidentiality.

To evaluate medical students and ML models robustness to different
levels of signal-to-noise ratio (SNR), Gaussian white noise was added to each
recording according to Samit Ari methodology [108]. The assessment of the
classification performance can be based on class indices, such as sensitivity,
specificity and precision, which describes the classification results achieved
on each modelled class. However, in several situations, it is useful to repre-
sent the global classification performance with a single number. Therefore,
several measures have been introduced in literature to deal with this diagn-
ostic assessment problem. These metrics have been proposed to generally
face binary classification tasks and can behave differently depending on the
classification scenario. In this study, different global measures of classifica-
tion performances are compared by means of results achieved on an extended
set of real multivariate datasets. The systematic comparison is carried out
through multivariate analysis. Further investigations are then derived on
specific indices to understand how the presence of unbalanced classes and the
number of modelled classes can influence their behaviour.

Finally, this work introduces a set of benchmark values based on diffe-
rent random classification scenarios. These benchmark thresholds can serve
as the initial criterion to accept or reject a classification model on the basis of
its performance according to Samit Ari methodology [108].
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The following three levels of GWN levels were used: no GWN, SNR-40
(medium GWN level at 5 dB) and SNR-20 (high GWN level at 25 dB). The
SNRs were as follows: no GWN had a signal of approximately 45 dB and
noise at 0 dB; SNR-40 had a signal of approximately 45 dB and noise at 5 dB;
and SNR-20 had a signal of approximately 45 dB and noise at 25 dB. The
GWN was added across the frequency spectrum from 31.25 to 1968.75 Hz.
Audacity® (Muse Group, Limassol, Cyprus) was used to visualise waveforms
and spectrograms (Fig. 4.5.1).

Spectrogram: SNR-20

Spectrogram: SNR-40

$— ¥

Spectrogram: no GWN

= &

Waveform: no GWN Waveform: SNR-40 Waveform: SNR-20

Fig. 4.5.1. Flowchart visualisation of GWN levels added to lung sounds.
Spectrogram (top row) and waveform (bottom row) analysis from one 15 s
recording. Brighter backgrounds in the spectrogram indicate increasing
GWN intensity from lowest (no GWN), medium SNR-40, to highest SNR-20
(left to right column)

SNR — signal-to-noise ratio, GWN — Gaussian white noise.

4.6. Lung sound preparation for training and assessing human subjects

A website was created with training and examination sections for the
MEFS subjects and this platform had been successfully utilised in previous
pilot study [109]. The training section of the website featured a pictogram of
a chest with six clickable points, allowing students to listen to lung sounds,
effectively creating web-based virtual simulated patients (Fig. 4.6.1). The
information presented to the students was anonymised; only the patient’s age
and gender were included, along with details regarding the lung sound. The
training section contained 101 lung sound recordings, of which 54% were
DAS and CAS. The examination section was randomised and included 54
sound recordings, comprising equal proportions of NAS, CAS and DAS
classes of lung sounds. Prior to the pilot study, the website was tested with
15 students to assess its functionality during a dry run and to collect data for
sample size calculation. A pulmonologist reviewed the website. Enrolment
involved 52 second- and third-year medical students who met specific
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enrolment criteria and provided informed consent. After 4 days of training
subjects were assessed for ability to correctly identify NAS, CAS, DAS via 3
exams, each having different levels of GWN (no GWN, GWN at SNR-40,
GWN at SNR-20).

Individual sounds

Bronchovesicular Bronchovesicular sounds are like a mixture of both bronchial RGO
and vesicular tones. They are best heard between scapulae and
in the 1st and 2nd intercostal space, near the sternum. Their

inspiration and expiration ratio is 1:1.

Bronchial Bronchial sounds are harsh and loud. They are best heard
during the expiration phase. Their inspiration and expiration

PLAY AUDIO
ratio are 1:1 or 2:1.

Vesicular Vesicular sounds are soft, blowing sounds that have inspiration
to expiration ratio of 3:1.

PLAY AUDIO

Crackles Crackles are brief, interrupted, explosives noises, resulting from B A% Aliba0
the bubbling of air through airway secretions. They may be

heard in inspiration and expiration, but better in inspiration.

Wheezes Wheezes are high-pitched whistling sounds made whilst
breathing. Wheezes may be audible during the inspiration or
expiration phase.

PLAY AUDIO

Descriptions of lung sounds is according to the textbook; Naudzifinas, A. et. al. (2021).
Basics of medical diagnostics and the main clinical syndromes: for the 2nd and 3rd year
medical students. Vitae Litera.

Fig. 4.6.1. General website layout

4.7. Lung sound preparation for training and assessing
machine learning models

The sound files were converted to spectrograms and scalograms. Featu-
res were extracted at 3-second intervals from spectrograms and scalograms
(the approximate average expiration/inspiration time ratios being 1.0 and 3.4,
respectively) [110]. The following features were extracted from each of 250
recordings: average value of scalogram coefficients (mean), variability of
scalogram coefficients (standard deviation), tailedness of the distribution of
coefficients (kurtosis), asymmetry of the distribution of coefficients (skew-
ness), central value of scalogram coefficients (median), most frequently
occurring value in the coefficients (mode), smallest coefficient value (mini-
mum) and most considerable coefficient value (maximum). The 450 extrac-
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ted features each 15 s recording. Then, the each of 250 legers were catego-
rised with a class label columns (NAS, CAS or DAS) and saved to a comma-
separated values (CSV) file ready to be fed into ML models.

4.8. Machine learning models

A total of 12 supervised learning ML models were used: AdaBoost,
CatBoost, ET, GB, Histgradient, K-NN, LightGBM, LR, MLP, RF, SVM,
XGBoost. The models were chosen due to their potential and being previous-
ly used in researches related to lung sounds or other auditory bio signals
recognition along with their ability to be applied to smaller datasets.

The models were trained using methodology that utilises extracted
features from scalograms and spectrograms [111].

The models selection ranged from simplest such as K-NN to more
sophisticated models such as XGBoost classifier. The K-NN is instance-
based learning model that uses a nonparametric classification algorithm and
is relatively efficient with small datasets. Another model that held a great
potential was SVM because in past research it done well with small datasets
that have more features than cases, as in our project that has 250 lung sounds
with 450 features. The SVM model also shows robustness. LR is a classical
statistical method that uses a linear model to predict binary classes. RF uses
multiple decision trees during training. It also shows excellent robustness.
More sophisticated models such as XGBoost and Histgradient implements
gradient boosting parameters to improve performance over models such as
RF regarding model accuracy. This model uses non-linear relations in
modelling and has the potential to identify more subtle differences in lung
sounds this could assist the model in making the correct predictions.

4.9. Hardware utilised for training and
assessing machine learning models

A custom-built PC running Windows® 10 operating system (Microsoft
Corporation, Redmond, WA, USA) was used, equipped with an Intel® Core™
17-12700K processor, 64 GB of RAM, and an NVIDIA GeForce RTX 3060
graphics card with 12 GB of VRAM (NVIDIA Corporation, Santa Clara, CA,
USA).

34



4.10. Model training and testing

GWN was added using Anaconda® (Austin, TX, USA) with Jupyter
Notebook 6.4.7 utilising Python packages for machine learning training and
assessment. Audio features were extracted using the Python library on to a
comma-separated values (CSV). Lung sounds were labelled in double-blind
setting. The datasets were split into 80/20 ratio for training and testing [112].

The split data contained even proportional number of NAS, CAS, DAS
lung sounds at three different levels of GWN (no GWN, SNR-40, SNR-20).
During cross-validation, the training data were partitioned into nine folds to
ensure a similar distribution of the target classes in each fold and to improve
the ML models. Due to class imbalance, stratification of the dataset was
critical to ensure that each block of data contained representatives from each
category [113]. The performance metric for each fold was collected and aver-
aged at the end to provide the best evaluation of the model’s performance.

In total, 30 iterations (runs) were performed for each model, including
handling class imbalance, performing cross-validation, training the models,
and calculating the performance metrics [114]. Once the best model was
selected out of the 24 potential variations (12 ML models based on spectro-
grams and 12 based on scalograms), the model was fine-tuned again and 45
runs were performed, for average MMC calculations.

4.11. Performance metrics

The following performance markers were used to assess the validity of
the models. Particular importance on ROC-AUC, PR-AUC, MCC, Fl1-score,
TP, TN, as the study examined the best ML models’ diagnostic validity.

True positive (TP): is a measure of classification of adventitious sound
identified in patients with true adventitious lung sounds. False positive (FP)
measures the classification of normal lung sounds as adventitious lung
sounds. True negative (TN) measures the classification of normal sounds as
normal, and false negative (FN) states adventitious sounds as normal.

Sensitivity (Sens), also known as recall, is a measure of the ability of the
model to correctly detect positive cases of pathological lung sounds.

B TP
Sens = TP+ FN [115]
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Specificity (Spec), is the measure of the model’s ability to identify a
negative test result given that lung sounds correctly are normal.

TN
Spec = TN + FP [116]
False positive rate (FPR) is the opposite of specificity:
FPR =1 — Spec [117]

ROC-AUC: measures the overall performance of a model to classify lung
sounds as normal or pathological. This is a robust measure, relying on all
possible classification thresholds. The ideal classifier would produce a point
in the top-left corner of the ROC space, indicating maximum sensitivity and
specificity (minimal false positive rate). In contrast, a random classifier
would generate points along the diagonal of the ROC space, extending from
the bottom-left to the top-right corner [118]. The AUC can be approximated
by summing up the areas of the trapezoids formed between points on the
receiver operating characteristic (ROC) curve:

n—1

+ +
AUC%Z(TPRI TPR* 1) (ppR,,—FPR)  [119, 120]

2
i=1
Accuracy (Acc), is a measure of the overall correctness of the model by
calculating the proportion of correct predictions (both true positives and true
negatives) out of all predictions. This is a good measure if classes are
balanced. Though if dataset suffers from imbalance MCC is preferred [118].

- TP+ TN
ACC= T TN+ FP + FN [121]

Positive predictive value (PPV) also called precision, is a measure of the
correct positive predictions:

TP
TP + FP

F1-score — measures the harmonic mean of precision (PPV) and recall
(sensitivity). This measurement is widely use in machine learning and is
especially useful when trying to understand models diagnostic accuracy
trained and assessed on imbalanced datasets.

PPV =

[122]

Fl-score = 2 x Precision x Recall .
Precision + Recall [123]
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Cohen’s Kappa is a statistical measure designed to evaluate the level of
agreement between two evaluators or classifiers, adjusting for the possibility
of agreement due to random chance. It is commonly employed in classi-
fication tasks to gauge model performance, particularly in cases involving
imbalanced datasets.

= 1 —Pe
Po —Pe
where: Kk — Cohen’s Kappa;
Po — is the proportion of instances where the evaluators agree;
Pe — the proportion of agreement expected by chance [124].

Matthews correlation coefficient (MCC) was mainly used in binary
classifications, but it has been adapted in multivariant studies too. It is another
excellent measurement for use when datasets are imbalanced. It incorporates
TN, TP, FP, FN in calculations and gives values ranging from —1 to 1. The
interpretation of MCC values is provided bellow, as adapted from Natarjan
Meghanathan article [125].

Table 4.11.1. MCC Value interpretation

MCC value Interpretation

0.80 to 1.0 Very strong positive (model almost always has correct prediction)
0.60 to 0.79 Strong positive

0.40t0 0.59 | Moderate positive

0.20 to 0.39 Weak positive

0.00t0 0.19 | No better than random guessing

—0.19 t0 —0.01 | Very weak negative
—0.39 to —0.20 | Poor classification
—0.59 to —0.40 | Moderate negative
—0.79 to —0.60 | Strong negative

—1.00 to —0.80 | Very strong negative (model predicts completely opposite direction
from expected results)

MCC — Matthews correlation coefficient.
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4.12. Statistical analysis

The data for ML models and LSMU medical students were analysed
using a Microsoft® Excel® (Microsoft Corporation, Redmond, Washington,
United States) spreadsheet and the JASP (ver. 0.18.3; Jeffreys’ Amazing
Statistics Programme, The Jamovi project, Sydney, Australia) statistical
package [126]. Additionally, IBM® SPSS® ver. 29 (IBM Inc., Armonk, New
York, United States) was also utilised to complement analysis via JASP. A
P-value of 0.05 or below was considered statistically significant. The results
were presented in tables and summarised in a box-and-whisker plot.

During data cleaning, seven subjects were excluded from further statisti-
cal analysis for not completing all three assessments. Therefore, statistical
analysis was performed on 45 out of 52 subjects.

The results did not adhere to a normal distribution; therefore, nonpara-
metric tests were used for further analysis of median values. The Wilcoxon
rank-sum test assessed the effect of training on students’ ability to discern
lung sounds accurately, whilst Friedman’s test was used to analyse the impact
of the three GWN levels on different lung sound classes with two degrees of
freedom. Finally, a post hoc comparison was performed to evaluate the ability
of medical students to recognise the lung sound classes (NAS, CAS and DAS)
separately under the three different levels of GWN.

For human subjects naive second- and third-year medical students were
used. The data was collected from a proprietary website on which students
were trained and assessed using MongoDB® (MongoDB, Inc., New York
City, NY, USA) software along with entering it into a Microsoft® Excel®
(Microsoft Corporation, Redmond, Washington, United States) spreadsheet
for statistical analysis.

The ML model performance was recorded utilising Anaconda® (Austin,
TX, USA) with Jupyter Notebook 6.4.7 utilising Python packages for machine
learning training together with assessment and saved in comma-separated
value (CSV) format.

For comparison of machine learning tools Friedman test was applied with
post hoc pairwise comparison to compare the diagnostic accuracy of 24
different variations of ML models. To compare 12 spectrogram and 12 scalo-
gram based ML models Wilcoxon signed-rank test was used.

Finally, Friedman test was applied with post hoc pairwise comparison to
compare best ML model and medical students scores.
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4.13. Bioethics of research

Permission for the study was obtained from Kaunas’ Regional Bioethics
committee (P1-BE-2-57/2021). The bioethics permission transcript has been
attached in the appendix (Annex 2). The study was registered on the Clinical
trials website (ID NCT05731193) and published on Good Clinical Practice
Network.

4.14. Financing of the study

Partial research won sponsorship of €20,000 from joint funds of Kaunas
University of Technology (Grant No. PP2023/39/4) and Lithuanian Univer-
sity of Health Sciences.
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S. RESULTS

5.1. Descriptive statistics

Table 5.1.1. Descriptives showing lung sounds population

?ud;gelsl(t)ilﬁ?;: Female Fenz;;;)Age Males M?éﬁ;;ge Overall Ove(lé:;;l)age
NAS 26 69.5 (16.9) 26 56.5 (18.6) 52 63.0 (18.0)
CAS 10 75.5(8.4) 13 66.0 (12.2) 23 70.1 (11.5)
DAS 12 78.7 (12.3) 21 69.0 (11.7) 33 72.5 (12.7)
Overall 48 73.1(14.7) 60 62.9 (16.0) 108 67.4(16.2)

SD - standard deviation.

Table 5.1.2. Descriptive analysis by gender and age of medical students

Female Age Male age Overall age
Female (SD) Males (SD) Overall (SD)
32 21.9(2.4) 13 21.6 3.1) 45 21.8 (2.6)

SD - standard deviation.

5.2. ML model performance

In total, 24 machine models’ variations were tested with spectrogram and
scalogram visualisations, under three levels of GWN noise (no added noise,
GWN SNR-40 and GWN SNR-20). The impact of GWN was monitored on
three main classes of lung sounds: NAS, CAS, DAS.

To display and comprehend performance of ML model, three main
methods were used: confusion matrix, PR-AUC, ROC-AUC. The models
were tested for overall impact of GWN on their performance via Friedman
test.

From Fig. 5.2.1, the impact of Gaussian white noise is clearly observed
in true positive (TP), true negative (TN), false positive (FP), and false nega-
tive (FP), as seen in the Confusion matrix of spectrogram based AdaBoost
model. At no GWN added levels, 47/70 CAS are identified correctly, 25/50
of DAS class is correctly identified, and 96 of 130 are correctly identified.
The confusion matrix at SNR-40 shows a sharp decrease in the performance
of spectrogram-based AdaBoost models’ performance with only 3/70 CAS
correctly identified, the slightly more significant number of DAS correctly
identified 27/50 and 110/130 of NAS correctly identified. The drop in values
at the GWN SNR-20 level for DAS with 0/50 was identified correctly, and
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CAS showed abysmal performance compared to no GWN at 6/70.
Meanwhile, NAS class sounds improved, with 120/130 being correctly
identified. Though the prior statement is true, we can see that the model has
a tendency to label all three classes of lung sounds as NAS at GWN SNR-20,

showing serious issues with the correct classification at higher levels of
ambient noise.

Spectrogram confusion matrix - Spectrogram confusion matrix -
AdaBoost (no GWN) AdaBoost (GWN SNR-40)
80
- 70
CAS 45 8 17 CAS 28 6 36
- 60
_ 50 =
] ]
£ DAS 1 30 19 40 £ DAS 3 26 21
< 30 <<
-20
NAS 24 26 10 NAS 18 19 93
CAS DAS NAS CAS DAS NAS
Predicted Predicted
Spectrogram confusion matrix -
AdaBoost (GWN SNR-20)
CAS 20 0 50 100
- 80
©
2 DAS 0 0 50 60
<
40
NAS 12 4 114 -20
-0

CAS DAS NAS
Predicted

Fig. 5.2.1. Confusion metrics showing significant impact (P = 0.000)
of GWN on AdaBoost models’ ability to identify lung sounds correctly
(from top to bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-
tated sound, DAS — discontinuous auscultated sound, AdaBoost — Adaptive Boosting.
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Spectrogram precision-recall curve -

Spectrogram precision-recall curve -
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Fig. 5.2.2. PR curve showing significant impact (P = 0.000) of GWN
on AdaBoost models’ ability to identify lung sounds correctly
(from top to bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-
tated sound, DAS — discontinuous auscultated sound, AdaBoost — Adaptive Boosting.

From Fig. 5.2.2, it can be observed that spectrogram-based AdaBoost
struggles to achieve good precision to recall values for all classes, but the
DAS class performance is significantly worse with much lower PR-AUC out
of the three. At medium levels of GWN (SNR-40), the NAS and CAS lung
sound classes identification are impacted, as exemplified by a drop in
precision compared to recall and lower PR-AUC. However, DAS class has
not been negatively impacted. Finally, once GWN is increased to SNR-20
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levels, all three classes of lung sounds are heavily and negatively impacted.
DAS class sound identification bears the biggest brunt of the impact, and
precision compared to recall rates drops off into an abyss. Therefore, the
model shows overall poor precision to recall performance with limited
robustness even at medium levels of GWN.

Spectrogram ROC curve -
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Fig. 5.2.3. ROC curve showing significant impact (P = 0.000) of GWN

on AdaBoost models’ ability to identify lung sounds correctly

(from top to bottom)

GWN - Gaussian white noise, NAS — normal auscultated sound, CAS- continuous auscul-

tated sound, DAS — discontinuous auscultated sound, AdaBoost — Adaptive Boosting.
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From Fig. 5.2.3, the impact of Gaussian white noise (GWN) levels on the
actual positive rate (TPR) compared to the false positive rate (FPR) in the ROC
curve can be observed for the spectrogram-based (Adaptive Boosting)
AdaBoost model. At no GWN added level, the model shows strong perfor-
mance, especially for CAS and DAS classes of sounds, with weaker perfor-
mance for NAS class, as seen from the ROC area under the curve (AUC)
scores. However, once the levels of GWN are increased to SNR-40, the lines
for all three classes start to separate out as with CAS and NAS classes, TPR
reducing significantly compared to FPR, but with DAS sounds maintaining
relatively high ROC-AUC (area) score. Finally, once GWN at SNR-20 is added
to all three classes of lung sounds, AdaBoost, a distinct separation between all
three classes of lung sounds appears with DAS identification performance as
the best, followed by DAS and then NAS and shown by ROC-AUC values.

From Fig. 5.2.4, the impact of Gaussian white noise is clearly observed
on true positive (TP), true negative (TN), false positive (FP) and false nega-
tive (FP), as seen in the Categorical data Gradient Boosting (CatBoost)
confusion matrix. At no GWN added levels, 47/70 CAS are identified
correctly, 25/50 of DAS class is correctly identified, and 96 of 130 are
correctly identified. The confusion matrix at SNR-40 shows a sharp decrease
in the performance of spectrogram-based CatBoost ML model, with only 3/70
CAS correctly identified and a slightly more significant number of DAS
correctly identified at 27/50 and 110/130 of NAS correctly identified. The
drop in values at the GWN SNR-20 level for DAS with 0/50 was identified
correctly, and CAS showed almost abysmal performance at 6/70. Meanwhile,
NAS class sounds see even improvement, with 120/130 being correctly
identified. Though the prior statement is true, we can see that the model has
a tendency to label all three classes of lung sounds as NAS at GWN SNR-20,
showing serious issues with the correct classification.
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Spectrogram confusion matrix - Spectrogram confusion matrix -

CatBoost (no GWN) CatBoost (GWN SNR-40)
100
CAS 47 6 17 80 CAS 3 7/
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Spectrogram confusion matrix -
CatBoost (GWN SNR-20)

120
CAS 6 0 64 100

80
DAS 0 0 50 - 60
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40
NAS 0 8 122 -20

CAS DAS NAS
Predicted
Fig. 5.2.4. Confusion metrics showing significant impact (P = 0.000)
of GWN on CatBoost models’ ability to identify lung sounds correctly
(from top to bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-
tated sound, DAS — discontinuous auscultated sound, CatBoost — Categorical Boosting.

From Fig. 5.2.5, it can be observed that spectrogram-based Categorical
Boosting (CatBoost) achieves relatively good levels of precision compared
to recall for CAS, NAS class of sounds with slightly lower levels for DAS
class as exemplified via precision to recall area under the curve (PR-AUC)
values. At medium levels of GWN of SNR-40, the DAS and CAS lung sound
identification are impacted by reduced PR-AUC, but the impact on NAS
sounds is more limited. Finally, once GWN is increased to SNR-20 levels, all
three classes of lung sounds are heavily and negatively impacted, with CAS
and DAS class sound identification bearing the biggest brunt on the impact,
precision compared to recall rates drop off into an abyss. The spectrogram-
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based CatBoost model at no GWN added level shows relatively good perfor-
mance, but with a caveat that this performance depends on the sound class,
and shows limited robustness even to medium levels of GWN.
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Fig. 5.2.5. PR curve showing significant impact (P = 0.000) of GWN on
CatBoost models’ ability to identify lung sounds (from top to bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-
tated sound, DAS — discontinuous auscultated sound, CatBoost — Categorical Boosting.
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Fig. 5.2.6. ROC curve showing significant impact (P = 0.000) of GWN

on CatBoost models’ ability to identify lung sounds correctly
(from top to bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-
tated sound, DAS — discontinuous auscultated sound, CatBoost — Categorical Boosting.

From Fig. 5.2.6, the impact of Gaussian white noise (GWN) levels on the
true positive rate (TPR) as compared to the false positive rate (FPR) in the
receiver operating characteristic (ROC) graph can be observed for the
spectrogram-based Categorical Boosting (CatBoost) model. At no GWN
added level, the model shows strong performance, especially for CAS and
DAS classes of sounds, with slightly weaker performance for the NAS class,
as seen from the ROC area under the curve (AUC) scores. However, once the
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levels of GWN are increased to SNR-40, the lines for all three classes are
impacted, with CAS and NAS class’s TPR as compared to FPR being the
lowest but with DAS sounds maintaining a relatively high ROC-AUC (area)
score. Finally, once GWN at SNR-20 is added to all three classes of lung
sounds, a distinct separation between all three classes of lung sounds appears.
The CAS and NAS identification performance being the lowest, with the most
excellent robustness shown by the DAS class, none of the less DAS and NAS
classes are pretty much weaving around the random line (dashed line).
Therefore, according to ROC-AUC values, the model is unfunctional as a
diagnostic tool at the highest GWN levels.

Spectrogram confusion matrix - Spectrogram confusion matrix -
Extra Trees (no GWN) Extra Trees (GWN SNR-40)
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Fig. 5.2.7. Confusion metrics showing significant impact (P = 0.000) of
GWN on Extra Tree models’ ability to identify lung sounds correctly
(from top to bottom)

GWN - Gaussian white noise, NAS — normal auscultated sound, CAS — continuous
auscultated sound, DAS — discontinuous auscultated sound.
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From Fig. 5.2.7, the impact of Gaussian white noise is observed on true
positive (TP), true negative (TN), false positive (FP) and false negative (FP)
as seen in the spectrogram-based Extra Trees’ confusion matrix table. At no
GWN added levels, 40/70 CAS was identified correctly, only 13/50 of the
DAS class was correctly identified, and 103/130 of the NAS were correctly
identified. The confusion matrix at SNR-40 shows a sharp decrease in the
performance of the model performance with a sharp drop in TP for the CAS
class, with only 4/70 correctly identified, the slightly more significant number
of DAS correctly identified at 9/50, and 123/130 of NAS correctly identified.
The values dropped at the GWN SNR-20 level, for DAS and CAS showed
extremely poor performance, with 0/50 and 1/70 identified correctly, respec-
tively. Meanwhile, NAS class sounds improved, with 128/130 correctly iden-
tified.

Though the prior statement is accurate, we can see that the model has a
tendency to label all three classes of lung sounds as NAS at GWN SNR-20,
showing serious issues with the correct classification. According to confusion
matrix TP scores, the spectrogram-based extra tree model shows poor per-
formance even at no GWN levels.

From Fig. 5.2.8, it can be observed that spectrogram-based Extra Trees
struggles achieved overall sub-power levels of precision compared to recall.
The NAS class performed followed by CAS and DAS as exemplified via
precision to recall area under the curve (PR-AUC) values. At medium levels
of GWN of SNR-40, all three classes were impacted, but the CAS class was
the most significantly impacted, as seen with dropping precision compared to
the recall curve and reduced PR-AUC values. Finally, once GWN is increased
to SNR-20 levels, all three classes of lung sounds are heavily and negatively
impacted, with DAS class sound identification bearing the biggest brunt of
the impact, precision compared to recall rates drop off into an abyss for
spectrogram-based Extra Trees ML model.
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Fig. 5.2.8. PR curve showing significant impact (P = 0.000) of GWN on
Extra Tree models’ ability to identify lung sounds correctly
(from top to bottom)

GWN - Gaussian white noise, NAS — normal auscultated sound, CAS — continuous
auscultated sound, DAS — discontinuous auscultated sound.
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Fig. 5.2.9. ROC curve showing significant impact (P = 0.000) of GWN on

Extra Tree models’ ability to identify lung sounds correctly
(from top to bottom)

GWN - Gaussian white noise, NAS — normal auscultated sound, CAS — continuous
auscultated sound, DAS — discontinuous auscultated sound.

From Fig. 5.2.9, the impact of GWN levels on the true positive rate
(TPR) as compared to the false positive rate (FPR) in the receiver operating
characteristic graph can be observed for the spectrogram-based Extra Trees
model. At no GWN added level, the model shows strong performance,
especially for CAS and DAS classes of sounds, with slightly weaker per-
formance for the NAS class as seen from ROC-AUC (area) scores. However,
once the levels of GWN are increased to SNR-40, the TPR compared to FPR
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for all three classes is negative. Especially for CAS and NAS classes, but with
DAS sounds maintaining relatively as seen from the ROC area under the
curve (ROC-AUC) scores. Finally, once GWN at SNR-20 is added to all three
classes of lung sounds, a distinct separation between all three classes of lung
sounds appears, with CAS and NAS identification performance being the
lowest, with the greatest robustness shown by DAS class, none of the less
DAS and NAS classes are pretty much weaving around the random line
(dashed line). Therefore, according to ROC-AUC values, the model is
unfunctional as a diagnostic tool at the highest GWN levels.

Spectrogram confusion matrix - Spectrogram confusion matrix -
Gradient Boosting (no GWN) Gradient Boosting (GWN SNR-40)

CAS | 5 2 15 80 CAS 20 1 47 80

DAS 2 26 DAS 10 25 14

21
NAS 19 16 -20 NAS 25 7 97 - 20
NAS

CAS DAS CAS DAS NAS
Predicted Predicted

Actual
Actual

Spectrogram confusion matrix -
Gradient Boosting (GWN SNR-20)

1120
80
s
2 DAS| 49 0 0 - 60
<
40
-0
CAS DAS  NAS

Predicted
Fig. 5.2.10. Confusion metrics showing significant impact (P = 0.000) of
GWN on Gradient Boosting models’ ability to identify lung sounds correctly
(from top to bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-
tated sound, DAS — discontinuous auscultated sound.
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From Fig. 5.2.10, the impact of Gaussian white noise (GWN) is clearly
observed on true positive (TP), true negative (TN), false positive (FP) and
false negative (FP) as seen in the spectrogram-based Gradient Boosting
confusion matrix. At no GWN added levels, 52/70 CAS was identified
correctly, only 26/50 of the DAS class was correctly identified, and 94/130
of the NAS were correctly identified. The confusion matrix at SNR-40
(medium levels) shows a sharp decrease in performance of the model perfor-
mance with a sharp drop in TP for the CAS class, with only 20/70 correctly
identified, whilst maintaining performance for DAS and NAS with 25/50
97/130 scores, respectively. The TP scores dropped at the GWN SNR-20
level for NAS and DAS class identification, showing abysmal performance:
5/130 and 0/50 were identified correctly, respectively.

Meanwhile, CAS class sounds see even improvement, with 68/69 being
correctly identified. Though the prior statement is accurate, we can see that
the model tends to label all three classes of lung sounds as CAS at GWN
SNR-20, showing serious issues with the correct classification. The Gradient
Boosting ML model shows an overall reasonable performance according to
confusion matrix scores, especially for CAS and NAS sounds, but with poor
performance for the DAS class, especially with high levels of GWN.

From Fig. 5.2.11, it can be observed that spectrogram-based Gradient
Boosting model achieves a reasonable precision performance compared to
recall for CAS, NAS class of sounds with lower diagnostic levels for DAS
classes exemplified via precision to recall area under the curve (PR-AUC)
values. At medium levels of GWN of SNR-40, the NAS, DAS, and especially
CAS lung sound identifications are impacted by reduced PR-AUC, but the
impact on NAS sounds is more limited. Finally, once GWN is increased to
SNR-20 levels, all three classes of lung sounds drop down as compared to no
GWN-added levels, and this statement is especially true for CAS and DAS
classes. Therefore, the spectrogram based gradient boosting models accor-
ding to PR-AUC values reasonable performance for two classes, but with
worse performing DAS class at no GWN-added levels and limited robustness
to GWN even at GWN SNR-40 levels.
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Fig. 5.2.11. PR curve showing significant impact (P = 0.000) of GWN on
gradient boosting models’ ability to identify lung sounds correctly
(from top to bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-
tated sound, DAS — discontinuous auscultated sound.
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Spectrogram ROC curve -
Gradient Boosting (no GWN)
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Fig. 5.2.12. ROC curve showing significant impact (P = 0.000) of GWN

on Gradient Boosting models’ ability to identify lung sounds correctly
(from top to bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-
tated sound, DAS — discontinuous auscultated sound.

From Fig. 5.2.12, the impact of Gaussian white noise (GWN) levels on
the true positive rate (TPR) as compared to the false positive rate (FPR) in
the receiver operating characteristic (ROC) graph can be observed for the

spectrogram-based Gradient Boosting

model. At no GWN added level, the

model shows strong performance, especially for CAS and DAS classes of
sounds, with slightly weaker performance for the NAS class as seen from the
ROC area under the curve (ROC-AUC) scores. However, once the levels of
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GWN are increased to SNR-40, the curves for all three classes are impacted
negatively, with CAS and NAS classes TRP being the lowest, but with DAS
sound class maintaining a relatively high ROC-AUC (area) score. Finally,
once GWN at SNR-20 is added to all three classes the ML model performs
poorly, especially for identification of CAS class sound. Therefore, the
spectrogram-based Gradient Boosting model shows good performance at no
GWN added levels, but lacks robustness with a great drop of performance at
medium levels of GWN. The model’s ability to identify true positives for
CAS and NAS are extremely poor and this is especially true for all three
sound classes at GWN SNR-20 levels.

Spectrogram confusion matrix — Spectrogram confusion matrix -
Histgradient Boosting (no GWN) Histgradient Boosting (GWN SNR-40)
| 100 100
CAS 2 16 CAS 15 7 48
80 80
E] 60 S 60
2 DAS 3 26 21 2 DAS 1 40 9
< <
- 40 40
NAS 16 8 -20 NAS 6 15 108 -20
CAS DAS NAS CAS DAS NAS
Predicted Predicted

Spectrogram confusion matrix —
Histgradient Boosting (GWN SNR-20)

- 100
CAS 15 7 48
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e |
£ DAS 1 40 9 60
<<
- 40
NAS 6 16 108 -20

CAS DAS NAS
Predicted

Fig. 5.2.13. Confusion metrics showing significant impact (P = 0.000)
of GWN on Histgradient models’ ability to identify lung
sounds correctly (from top to bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-
tated sound, DAS — discontinuous auscultated sound.
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From Fig. 5.2.13, the impact of Gaussian white noise (GWN) is clearly
observed on true positive (TP), true negative (TN), false positive (FP) and
false negative (FP) as seen in the spectrogram-based Histgradient ML
models’ confusion matrix. At no GWN added levels, 52/70 CAS was
identified correctly, only 26/50 of the DAS class was correctly identified, and
106/130 of the NAS were correctly identified. The confusion matrix at SNR-
40 (medium levels) shows a sharp decrease in performance with a drop in TP
for the CAS class with only 15/70 correctly identified, whilst maintaining
very strong performance for DAS and NAS with 40/50 and 108/130 correctly
identified, respectively. This robustness continued with GWN level SNR-20,
not impacting any of the three classes any further. The Histgradient model
shows overall good performance according to TP scores in the confusion
matrix table, especially for DAS and NAS sounds. Though, stable but poorer
performance for CAS class with GWN at SNR-40 and SNR-20 levels.
Additionally, the model showed reasonably good resilience to GWN.

Fig. 5.2.14 shows that spectrogram-based Histgradient ML model
achieves good precision performance compared to recall for CAS, NAS class
of sounds with lower diagnostic levels for DAS class as exemplified via
precision to recall area under the curve (PR-AUC) values. At medium levels
of GWN of SNR-40, the NAS, CAS, and out of the two, especially CAS lung
sound identification, are impacted, as shown by reduced PR-AUC. However,
the impact on DAS sounds shows robustness. Finally, once GWN is increased
to SNR-20 levels, all three classes spread out, but the curves drop lower,
indicating that the ambient noise impacts all classes of lung sounds. However,
CAS is more negatively affected than DAS and NAS. The spectrogram-based
Histgradient model shows good precision to recall scores with strong PR-
AUC values at no GWN-added levels. Additionally, robustness of the model
is resilient up to and including GWN SNR-40 levels with especially good
performance for DAS class.
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Fig. 5.2.14. PR curve showing significant impact (P=0.000) of GWN on
Histgradient models’ ability to identify lung sounds correctly
(from top to bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-
tated sound, DAS — discontinuous auscultated sound.
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Spectrogram ROC curve -
Histgradient Boosting (no GWN)
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Fig. 5.2.15. ROC curve showing significant impact (P=0.000) of GWN on

Histgradient models’ ability to identify lung sounds correctly
(from top to bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-
tated sound, DAS — discontinuous auscultated sound.

Fig. 5.2.15 shows the impact of Gaussian white noise (GWN) levels on the
true positive rate compared to the false positive rate in the receiver operating
characteristic (ROC) curve for the spectrogram-based Histgradient ML
model. At no GWN added level, the model showed a powerful performance,
especially for DAS and CAS sounds, with slightly weaker (but still strong)
performance for the NAS class, as seen from ROC area under the curve
(ROC-AUC) scores. However, once the levels of GWN are increased to SNR-
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40, the curves for two classes are impacted by the ambient noise: The CAS
and NAS class’s TPR scores drop. However, the rates are still quite good
compared to other models. Whilst DAS sounds maintain a high ROC-AUC
score. Finally, once GWN at SNR-20 is added to CAS and NAS classes,
performance continues to worsen whilst DAS continues to show robustness.
Nonetheless, at the highest levels of GWN due to the inability of the model
to correctly predict two out of three classes, the model becomes ineffective.
The diagnostic effectiveness of the Histgradient model is valid only at no
GWN added and GWN SNR-40 levels.

Spectrogram confusion matrix - Spectrogram confusion matrix -
K-NN (no GWN) K-NN (GWN SNR-40)
80
CAS 33 10 27 70 CAS 1 11 58 80
- 00 _ - 60
3 50 3
£ DAS 6 17 27 & DAS 0 28 22
< 40 <« - 40
-30
20 20
NAS 20 24 NAS 0 34
10 0
CAS DAS NAS CAS DAS NAS
Predicted Predicted

Spectrogram confusion matrix -
K-NN (GWN SNR-20)

120
CAS 0 1 100
- 80

DAS 0 0 50 60

Actual

40
NAS 0 2 128 -20

CAS DAS NAS
Predicted

Fig. 5.2.16. Confusion metrics showing significant impact (P = 0.000)
of GWN on K-NN models’ ability to identify lung sounds correctly
(from top to bottom)

Note extreme poor performance of this model. GWN — Gaussian white noise, NAS — normal

auscultated sound, CAS — continuous auscultated sound, DAS — discontinuous auscultated
sound, K-NN — K-Nearest Neighbors.
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Fig. 5.2.16 clearly shows the impact of Gaussian white noise on true
positive (TP), true negative (TN), false positive (FP), and false negative (FP),
as seen in the spectrogram-based K-Nearest Neighbors (K-NN) models’
confusion matrix. At no GWN added levels, 33/70 CAS was identified
correctly, with only 17/50 of DAS class correctly identified and 86/130 of
NAS correctly identified. The confusion matrix at SNR-40 (medium levels)
shows a sharp decrease in performance of the model performance with a sharp
drop in TP for the CAS class with only 1/70 correctly identified, whilst
maintaining very reasonable performance for DAS with 28/50 correctly and
NAS with 96/130 correctly recognised. The increase in the GWN levels of
SNR-20 saw a continued significant drop in the models’ performance for
DAS and CAS class sound identification, with both scoring 0. Only the NAS
class maintaining a good TP score of 128/130. The spectrogram-based K-NN
model overall showed very poor performance according to confusion matrix
across for DAS and CAS sounds, poor robustness to GWN levels and bias
towards mislabelling sound as NAS at higher GWN levels.

Fig. 5.2.17 shows spectrogram-based K-Nearest Neighbors (K-NN) ML
model achieves poor precision performance compared to recall for CAS,
NAS class of sounds with lower diagnostic levels for DAS class as precision
to recall area under the curve (PR-AUC) values. At medium levels of GWN
of SNR-40, the DAS, CAS, and out of the two, the diagnostic performance is
worse for DAS lung sound class identification, which is impacted with
reduced PR-AUC, but the impact of GWN of SNR-40 on NAS class is
minimal. Finally, once GWN is increased to SNR-20 levels, we see an
extreme impact on the DAS class with limited impact on the CAS and NAS
sound classes. According to PR graph the spectrogram-based K-NN model
was useless for predicting three classes under different levels of GWN.
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Fig. 5.2.17. PR curve showing significant impact (P = 0.000) of GWN
on K-NN models’ ability to identify lung sounds correctly
(from top to bottom)
Note extreme performance of the model. GWN — Gaussian white noise, NAS — normal

auscultated sound, CAS — continuous auscultated sound, DAS — discontinuous auscultated
sound, K-NN — K-Nearest Neighbors.

62



Spectrogram ROC curve -
K-NN (no GWN)

1.0
‘3 0.8
g T
£ 06 / P .
8 o
204 /)
S [ / .
= o2()/)
0.0 [
00 02 04 06 08 10

False positive rate

— Spectrogram ROC curve (class CAS) (area = 0.751)
Spectrogram ROC curve (class DAS) (area = 0.753)
— Spectrogram ROC curve (class NAS) (area = 0.638)

Spectrogram ROC curve -
K-NN (GWN SNR-40)

True positive rate
© o o =
N (o) o] o

o
[N}

o
o

0.2 0.4 0.6 1.0

False positive rate

— Spectrogram ROC curve (class CAS) (area = 0.508)
Spectrogram ROC curve (class DAS) (area = 0.712)
— Spectrogram ROC curve (class NAS) (area = 0.545)

0.8

Spectrogram ROC curve -
K-NN (GWN SNR-20)

1.0

0.8

0.6

0.4

True positive rate

0.2 >

0.0

0.0 0.2

0.4

0.6 0.8 1.0

False positive rate

— Spectrogram ROC curve (class CAS) (area = 0.500)
Spectrogram ROC curve (class DAS) (area = 0.385)
— Spectrogram ROC curve (class NAS) (area = 0.472)

Fig. 5.2.18. ROC curve showing significant impact (P = 0.000) of GWN on

K-NN boosting models’ ability to identify lung sounds correctly
(from top to bottom).

Note extreme performance of the model. GWN — Gaussian white noise, NAS — normal
auscultated sound, CAS — continuous auscultated sound, DAS — discontinuous auscultated

sound, K-NN — K-Nearest Neighbors.

From Fig. 5.2.18, the impact of GWN levels on the true positive rate
(TPR) as compared to the false positive rate (FPR) in the receiver operating
characteristic (ROC) curve can be observed for the spectrogram-based K-
Nearest Neighbors (K-NN) model. At no Gaussian white noise (GWN) added
level, the model shows a reasonable performance, especially for CAS and
DAS classes of sounds, with weaker (but still firm) performance for the NAS
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class, as seen from the ROC area under the curve (ROC-AUC) scores.
However, once the levels of GWN are increased to SNR-40, the lines for all
two classes of TPR are compared to the FPR drops for the CAS and NAS
classes. As seen from ROC-AUC (area) scores, DAS sounds maintain a
higher level. Finally, once GWN at SNR-20 is added, all three classes’ true
positive rates drop significantly, and the machine model becomes completely
useless. Therefore, the spectrogram-based K-NN model only functions at no

GWN added levels and shows a lack of robustness even to medium levels of
GWN.

Spectrogram confusion matrix - Spectrogram confusion matrix -
LightGBM (no GWN) LightGBM (GWN SNR-40)
- 100
CAS 45 4 21 CAS 11 4 55 100
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E DAS 1 28 21 0 3 DAS 1 28 21 60
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Fig. 5.2.19. Confusion metrics showing significant impact (P = 0.000)
of GWN on LightGBM models’ ability to identify lung sounds correctly
(from top to bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-

tated sound, DAS — discontinuous auscultated sound, LightGBM — Light Gradient Boosting
Machine.
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From Fig. 5.2.19, the impact of Gaussian white noise is clearly observed
on true positive (TP), true negative (TN), false positive (FP) and false
negative (FP), as seen in the spectrogram-based Light Gradient Boosting
Machine (LightGBM) model’s confusion matrix. At no Gaussian white noise
(GWN) added levels, TP rates were above average for CAS, DAS and NAS
with scores of 45/70, 28/50 and 105/130, respectively. The confusion matrix
at SNR-40 (medium levels of GWN) shows a significantly negative impact
only on the model’s ability to identify CAS class with a score of 11/70.
However, once the GWN increased to SNR-20 level, it significantly worse-
ned the model's performance in discriminating between the three classes, with
DAS being impacted the most. The spectrogram-based LightGBM ML model
lost its power to discriminate between classes with only 22/70 and 0/50 for
CAS and DAS, respectively. The score for NAS was 97/130. The spectro-
gram-based model showed a reasonably good overall performance for all
three classes at no GWN-added levels. However, the model lacked robustness
and showed great TP score variability depending on GWN levels, as the score
for CAS was at medium levels, whilst performance drastically worsened for
recognition of the model at SNR-20 levels. The model's discrimination power
at the highest levels of GWN got even further impacted, and sounds were
classed mainly as NAS or CAS.

From Fig. 5.2.20, it can be observed that the spectrogram-based Light
Gradient Boosting Machine (LightGBM) achieves good performance of
precision to recall for CAS, NAS class of sounds with lower diagnostic levels
for DAS class as exemplified by precision to recall area under the curve (PR-
AUC). At medium levels of Gaussian white noise (GWN) of SNR-40, the
CAS, NAS and out of the two, the diagnostic performance was worse for CAS
class identification is impacted with reduced PR-AUC, but the DAS shows
robustness. Finally, once GWN is increased to SNR-20 levels, we see an
extreme impact on the DAS class with a lesser impact on CAS and NAS than
no GWN levels. Therefore, the spectrogram-based LightGBM ML model
shows good performance with intermediate robustness to GWM.
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Fig. 5.2.20. PR curve showing significant impact (P = 0.000) of GWN on
LightGMB models’ ability to identify lung sounds correctly (from top to

bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-
tated sound, DAS — discontinuous auscultated sound, LightGBM — Light Gradient Boosting

Machine.
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Fig. 5.2.21. ROC curve showing significant impact (P = 0.000) of GWN on
LightGBM models’ ability to identify lung sounds correctly (from top to
bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-
tated sound, DAS — discontinuous auscultated sound, LightGBM — Light Gradient Boosting

Machine.

From Fig. 5.2.21, the impact of Gaussian white noise (GWN) levels on
the true positive rate (TPR) as compared to the false positive rate (FPR) in
the receiver operating characteristic (ROC) curve can be observed for the
spectrogram-based Light Gradient Boosting Machine (LightGMB model). At
no GWN-added level, the model shows a good performance, especially for
the DAS class, with weaker (but still reasonable) performance for NAS and

67



CAS classes, as seen from ROC-AUC (area) scores. The model shockingly
shows great resistance to medium levels of GWN at SNR-40. The two groups
that are negatively affected are CAS and NAS. Finally, once GWN at SNR-20
is added, two groups, NAS and CAS TPR drop significantly, and the machine
model becomes useless. The DAS is the only class that maintains strong true
positive rates. Therefore, the spectrogram-based LightGBM ML model only
functions at no GWN and GWN SNR-40 and shows robustness to medium
levels of GWN but not high levels of GWN.

Spectrogram confusion matrix - Spectrogram confusion matrix -
Logistic Regression (no GWN) Logistic Regression (GWN SNR-40)
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Spectrogram confusion matrix —
Logistic Regression (GWN SNR-20)
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Predicted
Fig. 5.2.22. Confusion metrics showing significant impact (P = 0.000)
of GWN on Logistic Regression model’s ability to identify lung sounds
correctly (from top to bottom)

GWN - Gaussian white noise, NAS — normal auscultated sound, CAS — continuous
auscultated sound, DAS — discontinuous auscultated sound.
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From Fig. 5.2.22, the impact of Gaussian white noise is clearly observed
on true positive (TP), true negative (TN), false positive (FP) and false nega-
tive (FP), as seen in the spectrogram-based Logistic Regression model’s
confusion matrix. At no Gaussian white noise (GWN)-added levels, TP rates
were above average for CAS, DAS and NAS with scores of 46/70, 28/50 and
96/130, respectively. The confusion matrix at SNR-40 (medium levels of
GWN) significantly impacted the model, with scores for CAS and DAS at
5/70 and 10/50, respectively, with only 126/130 scores for NAS. However,
once the GWN increased to SNR-20, it significantly worsened the model’s
performance in discriminating between the three classes, leading to the
machine model losing its power to discriminate between classes with only
0/50 and 1/70 for CAS and DAS, respectively. The score for NAS was
130/130. The spectrogram-based Logistic Regression model showed a reaso-
nably good overall performance for all three classes at no GWN-added levels.
However, the model lacked any robustness as the score for CAS and DAS
worsened significantly at GWN SNR-40 levels. The model’s discrimination
power at the highest levels of GWN got even further impacted, and sounds
were classed mainly as NAS.

From Fig. 5.2.23, it can be observed that spectrogram-based Logistic
Regression ML model achieves a reasonable performance of precision
compared to recall for CAS and NAS sound classes but with significantly
lower diagnostic levels for the DAS class, as exemplified by precision to
recall area under the curve (PR-AUC). At medium levels of GWN of SNR-
40, all three classes are impacted, with the CAS class being impacted the
most, followed by the NAS class, but the DAS class shows robustness, as
shown by PR-AUC values. Finally, once GWN is increased to SNR-20 levels,
we see an extreme impact on the DAS class recognition with a lesser impact
on CAS and NAS classes, as compared to no GWN levels.
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Fig. 5.2.23. PR curve showing significant impact (P = 0.000) of GWN on
Logistic Regression model’s ability to identify lung sounds correctly
(from top to bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-
tated sound, DAS — discontinuous auscultated sound.
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Fig. 5.2.24. ROC curve showing significant impact (P = 0.000) of GWN

on Logistic Regression model’s ability to identify lung sounds correctly
(from top to bottom)

GWN - Gaussian white noise, NAS — normal auscultated sound, CAS — continuous
auscultated sound, DAS — discontinuous auscultated sound.

From Fig. 5.2.24, the impact of GWN levels on the true positive rate
(TPR) as compared to the false positive rate (FPR) in the receiver operating
characteristic (ROC) curve can be observed for the spectrogram-based Logis-
tic Regression model. At no GWN added level, the model shows a very good
performance, especially for CAS and DAS classes, with weaker (but still
good) performance for the NAS class recognition, as seen from the ROC area
under the curve (AUC) scores. The model performance drops is visible at
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medium levels of GWN at SNR-40 for two sound groups: CAS and special
NAS. It maintains good robustness for the DAS class. Finally, once GWN at
SNR-20 is added, all three classes are impacted, with DAS maintaining the
best ROC-AUC scores. The class’s TPR drops significantly for all three
classes, but nonetheless, the performance is of a reasonable standard, and all
three lines for all three classes maintain similar curvature and ROC-AUC
values above 0.600, showing strong performance of the Logistic Regression

ML model with ambient noise and strong robustness to even the highest
GWN levels.

Spectrogram confusion matrix - Spectrogram confusion matrix -
MLP classifier (no GWN) MLP classifier (GWN SNR-40)
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Spectrogram confusion matrix —
MLP classifier (GWN SNR-20)
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Fig. 5.2.25. Confusion metrics showing significant impact (P = 0.000) of
GWN on MLP model’s ability to identify lung sounds correctly (from top to
bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-
tated sound, DAS — discontinuous auscultated sound, MLP — Multilayer Perceptron.
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From Fig. 5.2.25, the impact of Gaussian white noise (GWN) is clearly
observed on true positive (TP), true negative (TN), false positive (FP) and
false negative (FP) as seen in spectrogram-based Multilayer Perceptron
(MLP) ML model’s confusion matrix. At no GWN-added levels, TP values
were above average for CAS, DAS and NAS, with scores of 51/70, 26/50 and
94/130, respectively. The confusion matrix at SNR-40 (medium levels)
showed a significant impact of ambient noise on the model with scores for
CAS and DAS at 0/70 and 9/50, respectively, with only 124/130 scores for
NAS class identification being strong. However, once the GWN increased to
SNR-20, it significantly worsened the model’s performance in discriminating
between the three classes, leading to the machine model losing its power to
discriminate between classes with only 0/50 and 0/70 for CAS and DAS,
respectively. The score for NAS sound class was 128/130. The MLP model
performed reasonably well for all three classes at no GWN-added levels.
However, the model lacked robustness as the CAS and DAS score worsened
significantly at GWN SNR-40 levels. The model’s discrimination power got
even further impacted, and sounds were classed mainly as NAS.

From Fig. 5.2.26, it can be observed that the spectrogram-based Multi-
layer Perceptron (MLP) achieves a reasonable performance of precision com-
pared to recall (PR) for the CAS and NAS classes, but with significantly
lower diagnostic levels for the DAS class as exemplified via precision to
recall area under the curve (PR-AUC). At medium levels of GWN of SNR-
40, all three classes, especially CAS and NAS, are being impacted, but the
DAS class is showing robustness, as exemplified by PR-AUC. However,
DAS is still the worst-performing class at medium levels of GWN for this
model. Finally, once GWN is increased to SNR-20 levels, a drop in precision
to recall is observed with reduced PR-AUC values, impacting particularly the
DAS class, with a lesser impact on CAS and very little impact on NAS,
indicating how high levels of noise impact all three classes of lung sounds at
very different levels but all negatively.
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Fig. 5.2.26. PR curve showing significant impact (P = 0.000) of GWN
on MLP model’s ability to identify lung sounds correctly
(from top to bottom)

GWN - Gaussian white noise, NAS — normal auscultated sound, CAS — continuous
auscultated sound, DAS — discontinuous auscultated sound, MLP — Multilayer Perceptron.
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Fig. 5.2.27. ROC curve showing significant impact (P = 0.000) of GWN

on MLP model’s ability to identify lung sounds correctly
(from top to bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-
tated sound, DAS — discontinuous auscultated sound, MLP — Multilayer Perceptron.

From Fig. 5.2.27, the impact of Gaussian white noise (GWN) levels on
true positive rate (TPR) as compared to the false positive rate (FPR) in the
receiver operating characteristic (ROC) curve can be observed for the spectro-
gram-based Multilayer Perceptron (MLP) ML model. At no GWN added
level, the model shows a very good performance, especially for CAS, follo-
wed by DAS classes with weaker (but still very good) performance for the
NAS class as observed from the ROC area under the curve (ROC-AUC)
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scores. The model performance drops at medium levels of GWN (SNR-40)
for two groups: CAS and particularly NAS. DAS class maintains a very good
performance at medium Gaussian white noise (GWN) levels. Finally, once
GWN at SNR-20 is added to all three classes, all models’ performance beco-
mes very average. Nonetheless, all classes maintain a good ratio of TPR to
FPR with a reasonable ROC-AUC throughout all three levels of GWN, with
the DAS class performing the best. The spectrogram-based MLP model does
not have the highest values for no GWN-added levels for all sound classes.
However, it maintains robustness at all three levels of GWN, which is one of
the few models with this property in ROC graph.

From Fig. 5.2.28, the impact of Gaussian white noise was observed on
true positive (TP), true negative (TN), false positive (FP) and false negative
(FP) as seen in the spectrogram-based Random Forest ML model’s confusion
matrix. At no Gaussian white noise (GWN) added level, TP scores were
reasonable for CAS and NAS recognition, with scores of 45/70 and 101/130,
respectively. The model struggled with the DAS class, the TP rate standing
only at 14/50. The confusion matrix at SNR-40 (medium levels) showed no
significant impact on the model, with scores for CAS and DAS at 8/70 and
3/50, respectively, with only 123/130 scores for NAS. However, once the
GWN increased to SNR-20, it significantly worsened the model’s perfor-
mance in discriminating between the three sound classes. The machine model
lost its ability to discriminate between classes, with only 0/50, 19/70, and
93/130 scores for DAS, CAS, and NAS, respectively.

The spectrogram-based Random Forest ML model showed overall poor
performance as it had problems identifying DAS class sounds even at no
GWN added levels. The model was not robust as the CAS and DAS scores
worsened significantly at GWN SNR-40 levels. The model's discrimination
power got even further reduced, and sounds were classed either as CAS or as
NAS at GWN SNR-20 level.
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Fig. 5.2.28. Confusion metrics showing significant impact (P = 0.000) of
GWN on Random Forest model’s ability to identify lung sounds correctly
(from top to bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-
tated sound, DAS — discontinuous auscultated sound.
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Fig. 5.2.29. PR curve showing significant impact (P = 0.000) of GWN
on Random Forest model’s ability to identify lung sounds correctly
(from top to bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-
tated sound, DAS — discontinuous auscultated sound.

From Fig. 5.2.29, it can be observed that spectrogram-based Random
Forest ML model achieves reasonable precision performance compared to
recall (PR) for CAS and NAS classes but with significantly lower diagnostic
levels for the DAS class, as exemplified via precision to recall area under the
curve (PR-AUC). At medium levels of Gaussian white noise (GWN) of SNR-
40, two classes recognition was affected: CAS and NAS. However, the DAS
class showed robustness, as exemplified by PR-AUC, and higher precision
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than recall levels. Finally, once GWN is increased to SNR-20 levels, we see
an extreme impact on the DAS class with a lesser impact on CAS and NAS,
indicating how high levels of ambient noise impact all three classes of lung

sounds identification at very different
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Fig. 5.2.30. ROC curve showing significant impact (P = 0.000) of GWN
on Random Forest model’s ability to identify lung sounds correctly

(from top to bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-
tated sound, DAS — discontinuous auscultated sound.
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From Fig. 5.2.30, the impact of (Gaussian white noise) GWN levels on
the true positive rate (TPR) compared to the false positive rate (FPR) in the
receiver operating characteristic (ROC) curve can be observed for the spectro-
gram-based Random Forest ML model. At no GWN-added level, the model
shows a very good performance, especially for CAS, followed by DAS classes,
with weaker (but still of good standard) performance for NAS class as seen
from the ROC area under the curve (AUC) scores. The model performance
drops at medium levels of GWN at SNR-40 for two groups: DAS and parti-
cularly NAS. The DAS class maintains a very good performance at medium
levels of GWN. Finally, once GWN at SNR-20 was added, all three classes
were heavily impacted. The ML models’ performance became very poor at the
highest levels of GWN, showing that the model held robustness to ambient
noise up to SNR-40 but, at SNR-20, lost its power for all classes with reduced
TPR compared to FPR and a drop in ROC-AUC values.

From Fig. 5.2.31, the impact of Gaussian white noise is observed on true
positive (TP), true negative (TN), false positive (FP) and false negative (FP)
scores as seen in the spectrogram-based SVM model’s confusion matrix. At
no Gaussian white noise (GWN) level, TP rates were low for CAS and DAS,
with scores of 13/70 and 2/50, respectively. The only class that correctly
identified was NAS with 122/130 score. The confusion matrix at SNR-40
(medium noise levels) showed no significant impact on the model, with
scores for CAS, DAS and NAS at 13/70, 2/50 and 122/130. However, once
the GWN increased to SNR-20, it worsened the performance significantly of
the model to discriminate between the three, leading to the machine model
losing its power to discriminate between classes with only 5/50 and 1/70 for
CAS and DAS correctly identified, respectively, with only NAS having a
good score of 130/130. The spectrogram-based SVM ML model performed
poorly even at the no GWN-added levels for CAS and DAS sound identifi-
cation. Yet, some robustness was shown by the model, as the scores did not
change at GWN SNR-40 levels. However, at GWN SNR-20, the model’s
discrimination power completely collapsed, and all classes were identified as
NAS.
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Fig. 5.2.31. Confusion metrics showing significant impact (P = 0.000) of
GWN on SVM model’s ability to identify lung sounds correctly
(from top to bottom)

GWN - Gaussian white noise, NAS — normal auscultated sound, CAS— continuous auscul-
tated sound, DAS — discontinuous auscultated sound, SVM — Support Vector Machines.

81



Spectrogram precision-recall curve - Spectrogram precision-recall curve -

SVM (no GWN) SVM (GWN SNR-40)
1.0 | '
L},I/VIL _
08{ Al ™Ma L
S 061/ o o S et s e s
a ., I by ]
(%] 8 tv] by
;l_’ 0 4 LL"‘-‘_‘__ 2 1"""-\_\
a v Ll a o)
LL
0.2 0.2
0.0 . 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Recall Recall
— Spectrogram PR curve (class CAS) (area = 0.684) — Spectrogram PR curve (class CAS) (area = 0.569)
Spectrogram PR curve (class DAS) (area = 0.533) Spectrogram PR curve (class DAS) (area = 0.487)
— Spectrogram PR curve (class NAS) (area = 0.770) — Spectrogram PR curve (class NAS) (area = 0.660)

Spectrogram precision-recall curve -
SVM (GWN SNR-20)

1.0

0.81 /]
LT
z |- T —
v fl Ay ot
(] T M
E 0.4 I ’ '-L.d_»--'-_ﬁ_l“

i
0.2
0.0
0.0 0.2 0.4 0.6 0.8 1.0

Recall

— Spectrogram PR curve (class CAS) (area = 0.445)
Spectrogram PR curve (class DAS) (area = 0.314)
— Spectrogram PR curve (class NAS) (area = 0.582)

Fig. 5.2.32. PR curve showing significant impact (P = 0.000) of GWN on
SVM model’s ability to identify lung sounds correctly (from top to bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-
tated sound, DAS — discontinuous auscultated sound, SVM — Support Vector Machines.

From Fig. 5.2.32, it can be observed that the spectrogram-based Support
Vector Machines (SVM) model achieves a reasonable performance of
precision compared to recall for the CAS and NAS class of sounds but with
significantly lower diagnostic levels for the DAS class, as exemplified via
precision-recall area under the curve (PR-AUC) values. At medium levels of
Gaussian white noise (SNR-40), all three classes are affected. Finally, once
GWN is increased to SNR-20 level, we see an extreme impact on the DAS
class with a lesser impact on CAS and NAS, indicating how high levels of
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noise impact all three classes of lung sounds at very different levels, but all
negatively. Though the spectrogram-based SVM ML model achieved reaso-
nable performance overall at no GWN-added, it came with a caveat of varied
performance between groups, with DAS sound class identification perfor-
mance being very poor. Yet, the SVM model showed little robustness to
GWN at medium and even more so at high GWN levels.
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Fig. 5.2.33. ROC curve showing significant impact (P = 0.000) of GWN on
SVM model’s ability to identify lung sounds correctly (from top to bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS— continuous auscul-
tated sound, DAS — discontinuous auscultated sound, SVM — Support Vector Machines.
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From Fig. 5.2.33, the impact of GWN levels on the true positive rate
(TPR) as compared to the false positive rate (FPR) in the receiver operating
characteristic (ROC) curve can be observed for the spectrogram-based
Support Vector Machines (SVM) model. At no GWN added level, this ML
model shows a good performance, especially for DAS, followed closely by
CAS classes with weaker (but still of good standard) performance for NAS
class as seen from ROC area under the curve (ROC-AUC) scores. The model
performance drops a bit at medium levels of Gaussian white noise (SNR-40)
for two sound groups recognition: CAS and NAS classes. Meanwhile, the
DAS class maintained excellent performance at medium levels of GWN.
Finally, once GWN at SNR-20 was added, all three classes were heavily
impacted. The performance became poorer at the highest levels of GWN,
especially for the NAS class, showing that the SVM model holds robustness
to ambient noise up to SNR-40 but, at SNR-20, loses its power for all classes
with a drop of TPR compared to FPR and decreased ROC-AUC values.

From Fig. 5.2.34, the impact of Gaussian white noise is clearly observed
on true positive (TP), true negative (TN), false positive (FP) and false nega-
tive (FP) as seen in the spectrogram-based Extreme Gradient Boosting classifier
(XGBoost) ML model’s confusion matrix. At no Gaussian white noise added
level, TP values for CAS, DAS, and NAS sound classes were 50/70, 15/50
and 96/130, respectively. The confusion matrix at SNR-40 (medium levels of
GWN) showed ML model’s decreased ability to identify CAS classes
correctly with a TP score of 17/70. DAS and NAS scores were at 26/50 and
111/130, respectively. However, once the GWN increased to SNR-20, it
significantly worsened the model’s performance to discriminate ability bet-
ween the three sound classes, leading to the XGBoost machine learning model
to lose its power to discriminate between classes with only 3/50 and 0/70 for
CAS and DAS correctly identified. The NAS class at the highest GWN was
identified. The DAS classes were hugely impacted, with 0/50 identified
correctly, whilst CAS identification was at 31/70 and 62/130 for NAS. The
XGBoost showed a good performance at no GWN added levels, especially
for CAS and DAS classes, and reasonable robustness at GWN SNR-40 levels.
However, once the levels increased, the ability of the model to discriminate
between three classes was reduced to two: CAS and NAS.
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Fig. 5.2.34. Confusion metrics showing significant impact (P = 0.000) of
GWN on XGBoost model’s ability to identify lung sounds correctly (from
top to bottom)

GWN - Gaussian white noise, NAS — normal auscultated sound, CAS— continuous auscul-

tated sound, DAS — discontinuous auscultated sound, XGBoost — Extreme Gradient Boosting
classifier.

&5



Spectrogram precision-recall curve - Spectrogram precision-recall curve -
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Fig. 5.2.35. PR curve showing significant impact (P = 0.000) of GWN

on XGBoost model’s ability to identify lung sounds correctly
(from top to bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-
tated sound, DAS — discontinuous auscultated sound, XGBoost — Extreme Gradient Boosting
classifier.

From Fig. 5.2.35, it can be observed that spectrogram-based Extreme
Gradient Boosting classifier (XGBoost) ML model achieved a good
performance of precision compared to recall for the CAS and NAS classes
but with slightly lower diagnostic levels for the DAS class, as exemplified
via precision to recall area under the curve (PR-AUC). At medium levels of
Gaussian white noise (SNR-40), the CAS class was impacted the most, with
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a significant drop in precision compared to recall. Meanwhile, NAS sound
class identification showed reasonable robustness to medium noise impact.

Whilst DAS showed a very strong

performance. Finally, once GWN is

increased to SNR-20 levels, we see an extremely negative impact on NAS
and DAS classes recognition with a lesser impact on NAS sound class.
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Fig. 5.2.36. ROC curve showing significant impact (P = 0.000) of GWN
on XGBoost model’s ability to identify lung sounds correctly
(from top to bottom)

0.8 1.0

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS— continuous auscul-
tated sound, DAS — discontinuous auscultated sound, XGBoost — Extreme Gradient Boosting
classifier.
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From Fig. 5.2.36, the impact of GWN levels on the true positive rate
(TPR) as compared to the false positive rate (FPR) in the receiver operating
characteristic (ROC) curve can be observed for the spectrogram-based
Extreme Gradient Boosting classifier (XGBoost) model. At no GWN-added
level, the model shows a very good performance, especially for DAS, follo-
wed closely by the CAS class with slightly weaker (but still of good standard)
performance for the NAS class recognition, as seen from the ROC area under
the curve (ROC-AUC) scores. The model performance drops significantly at
medium levels of GWN (SNR-40) for two groups: CAS and NAS. The DAS
class maintains a very good performance at medium levels of GWN. Finally,
once GWN at SNR-20 is added, all three classes are very heavily impacted.
The ML model’s performance becomes poorer at the highest levels of GWN,
especially for CAS and NAS sound identification, with only good perfor-
mance for DAS. Therefore, the XGBoost model holds robustness to ambient
noise up to SNR-40 but, at SNR-20, loses its power for two classes, making
it unviable at the highest levels of GWN.

From Fig. 5.2.37, the impact of Gaussian white noise (GWN) is clearly
observed on true positive (TP), true negative (TN), false positive (FP) and
false negative (FP), as seen in the scalogram-based AdaBoost model’s confu-
sion matrix. At no GWN added levels, only 4/70 CAS was identified correct-
ly, 15/50 of the DAS class was correctly identified, and 112/130 of the NAS
were correctly identified. The confusion matrix at SNR-40 (medium GWN
levels) performs better by determining TP for CAS, DAS and NAS at 16/70,
30/50 and 101, respectively. However, once the GWN increased to SNR-20,
it significantly worsened the model’s performance in discriminating between
the three classes, leading to the machine model losing its power to discrimi-
nate between classes with only 3/50 and 0/70 for CAS and DAS correctly
identified, respectively. The NAS class at the highest GWN was identified at
121/130 score. The scalogram-based AdaBoost ML model showed poor
performance at no GWN levels for CAS and DAS classes, showing bias
towards NAS classification. This changed significantly at GWN SNR-40
levels, with the model performing better predictions for all three classes,
especially CAS and DAS. Though once the highest levels of GWN were
introduced at SNR-20 levels, the scalogram-based AdaBoost model lost its
discrimination power completely and classed all lung sounds as NAS.
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Fig. 5.2.37. Confusion metrics showing significant impact (P = 0.000)
of GWN on AdaBoost model’s ability to identify lung sounds correctly

(from top to bottom)
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GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-

tated sound, DAS — discontinuous auscultated sound, AdaBoost — Adaptive Boosting.
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Scalogram precision-recall curve - Scalogram precision-recall curve -
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Fig. 5.2.38. PR curve showing significant impact (P = 0.000) of GWN
on AdaBoost model’s ability to identify lung sounds correctly
(from top to bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS— continuous auscul-
tated sound, DAS — discontinuous auscultated sound, AdaBoost — Adaptive Boosting.

From Fig. 5.2.38, it can be observed that scalogram-based AdaBoost
achieved a poor precision performance compared to recall for CAS, DAS
classes but with slightly better performance diagnostic levels for the NAS
class as exemplified via precision-recall area under the curve (PR-AUC)
values. At medium levels of Gaussian white noise (SNR-40), CAS and NAS
classes recognition was impacted the most with a significant drop in precision
compared to recall, whilst DAS class identification showed reasonable
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robustness, but it has to be remembered that its scores were the worst at no
GWN levels. Finally, once GWN is increased to SNR-20 levels, we see an
extremely negative impact on DAS class with a lesser impact on NAS and
CAS classes compared to no GWN levels.

Scalogram ROC curve - Scalogram ROC curve -
AdaBoost (no GWN) AdaBoost (GWN SNR-40)
1.0 | | 1.0 |
il A __/""—,—,»4:"_?l
£ 08/ gk £ 08 AT
- zaf ., P - ;’ _{‘/,/
v — - o DA
2 061 = 2 061 i ol
= J—/_; r x R o
wn 3 [ T P
o o - o B S
g— 0.4 1 J__f__,f ) % 0.4 1 P
E _4; ’—/—" E f"//—."/:,_m.
Foo2f A Fo2{ -
-'r /'/ | _{5{’&'
0.0 & 0.0 £
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False positive rate False positive rate
— Scalogram ROC curve (class CAS) (area = 0.735) — Scalogram ROC curve (class CAS) (area = 0.580)
Scalogram ROC curve (class DAS) (area = 0.847) Scalogram ROC curve (class DAS) (area = 0.849)
— Scalogram ROC curve (class NAS) (area = 0.658) — Scalogram ROC curve (class NAS) (area = 0.637)
Scalogram ROC curve -
AdaBoost (GWN SNR-20)
1.0 —=—
= ;,.:.’.'.-'
g 0.8 S g
e 0.6
3 -
T
% 0.4 ,.--//
2 o
= 0.2 /
0.0 £

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

— Scalogram ROC curve (class CAS) (area = 0.662)
Scalogram ROC curve (class DAS) (area = 0.822)
— Scalogram ROC curve (class NAS) (area = 0.582)

Fig. 5.2.39. ROC curve showing significant impact (P = 0.000) of GWN
on AdaBoost model’s ability to identify lung sounds correctly
(from top to bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-
tated sound, DAS — discontinuous auscultated sound, AdaBoost — Adaptive Boosting.
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From Fig. 5.2.39, the impact of Gaussian white noise (GWN) levels on
the true positive rate (TPR) as compared to the false positive rate (FPR) in
the receiver operating characteristic (ROC) curve can be observed for the
scalogram-based Adaptive Boosting (AdaBoost) model. At no GWN added
level, the model shows a good performance, especially for DAS, followed by
CAS classes with weaker (but only average standard) performance for NAS
class as seen from ROC area under the curve (ROC-AUC) scores. The model
performance drops significantly at medium levels of GWN at SNR-40 for two
groups: CAS and NAS. The DAS class maintains a very good performance
at medium levels of GWN. Finally, once GWN at SNR-20 is added, all three
classes will be impacted. The performance becomes poorer at the highest
levels of GWN, especially for CAS and NAS, with only very good perfor-
mance for DAS. Therefore, the model holds robustness to ambient noise up
to SNR-40 but, at SNR-20, loses its power for two sound classes recognition,
making the AdaBoost model useless at the highest levels of GWN.

From Fig. 5.2.40, the impact of Gaussian white noise (GWN) is clearly
observed on true positive (TP), true negative (TN), false positive (FP) and false
negative (FP), as seen in the scalogram-based Categorical data Gradient
Boosting (CatBoost) model’s confusion matrix. At no GWN added levels,
33/70 CAS was identified correctly, with 28/50 of DAS class correctly
identified and 91/130 of NAS correctly identified. The confusion matrix at
SNR-40 (medium levels) shows a significant decrease in the model’s perfor-
mance, with a drop in TP for CAS and DAS at 15/70 and 20/50 respectively.
However, it maintained reasonable performance for NAS 97/130. The
increase in the GWN levels to SNR-20 significantly worsens the model's
performance in discriminating between the three classes, leading to the
machine model to lose its power to discriminate between classes, with only
0/50 and 11/130 for DAS and NAS sounds correctly identified. The CAS
class at the highest GWN was identified at 60/70. This showed that even
though the scalogram-based CatBoost model showed a reasonable
performance at no GWN level for all three classes. The model showed some
resistance to ambient noise, and it still discriminated all three classes with
varied TP values and ever-increasing FP values. Once GWN was increased
to SNR-20, all classes were primarily identified as CAS and became useless
at discriminating between all three classes.
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Fig. 5.2.40. Confusion metrics showing significant impact (P = 0.000)
of GWN on CatBoost model’s ability to identify lung sounds correctly
(from top to bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-

tated sound, DAS — discontinuous auscultated sound, CatBoost — Categorical data Gradient
Boosting.

From Fig. 5.2.41, it can be observed that the scalogram-based categorical
boosting (CatBoost) model achieved a weaker performance of precision
compared to recall for the CAS class of sounds but with slightly better
performance diagnostic levels for DAS and NAS classes, as exemplified via
area under the curve (AUC) for PR curve. At medium levels of GWN of SNR-
40, CAS and DAS, classes were most heavily impacted, with a lesser impact
on NAS. Finally, once GWN is increased to SNR-20 levels, we see an extre-
mely negative impact on DAS classes with a lesser impact on NAS and CAS
classes than on no GWN levels.
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Fig. 5.2.41. PR curve showing significant impact (P = 0.000) of GWN
on CatBoost model’s ability to identify lung sounds correctly
(from top to bottom)
GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-

tated sound, DAS — discontinuous auscultated sound, CatBoost — Categorical data Gradient
Boosting.
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Fig. 5.2.42. ROC curve showing significant impact (P = 0.000) of GWN
on CatBoost model’s ability to identify lung sounds correctly
(from top to bottom)
GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-

tated sound, DAS — discontinuous auscultated sound, CatBoost — Categorical data Gradient
Boosting.

From Fig. 5.2.42, the impact of GWN levels on the true positive rate
(TPR) as compared to the false positive rate (FPR) in the receiver operating
characteristic (ROC) curve can be observed for the scalogram-based catego-
rical boosting (CatBoost) model. At no GWN added level, the model shows
a good performance for the DAS class, followed by CAS classes with the
weakest performance for the NAS as seen from the ROC area under the curve

95



(ROC-AUC). The model performance drops significantly at medium levels
of GWN (SNR-40) for two groups: CAS and NAS. Meanwhile, the DAS class
performs well at medium levels of GWN. Finally, once GWN increased to
SNR-20 level, all two classes will be very heavily impacted. The CatBoost
model’s performance becomes poorer at the highest levels of GWN, espec-
ially for CAS and NAS sound recognition, and true favourable rates decrease
to an inferior level with only good performance for DAS sound group.
Therefore, the CatBoost model shows reasonable performance at no GWN
levels, but already at SNR-40, the model starts having problems with CAS
and NAS classes identification. Therefore, this model is only a valuable as a
diagnostic tool at no GWN level.
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Fig. 5.2.43. Confusion metrics showing significant impact (P = 0.000)
of GWN on Extra Trees model’s ability to identify lung sounds correctly
(from top to bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-
tated sound, DAS — discontinuous auscultated sound.
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From Fig. 5.2.43, the impact of Gaussian white noise is observed on true
positive (TP), true negative (TN), false positive (FP) and false negative (FP)
as seen in the scalogram-based Extra Trees model’s confusion matrix. At no
GWN added levels, 31/70 CAS was identified correctly, 13/50 of the DAS
class was correctly identified, and 102/130 of the NAS was correctly identi-
fied. The confusion matrix at SNR-40 (medium levels) shows a decrease in
model performance with a drop in TP for CAS and NAS at 15/70 and NAS
at 77/130, respectively, but maintained performance (although still poor) for
DAS at 15/50. The increase in the GWN levels to SNR-20 significantly wor-
sens the model’s performance in discriminating between the three sound
classes, leading to the machine model losing its power to discriminate
between classes, with only 0/50 for DAS and 10/130 for NAS correctly iden-
tified. The CAS class at the highest GWN was identified at 66/70. This
showed that the scalogram-based Extra Trees model had a poor diagnostic
accuracy for the DAS class even at no GWN level and showed a lack of
robustness when GWN level was increased to SNR-40; class discrimination
significantly worsened with GWN SNR-20 level where all classes were
mostly identified as CAS.

From Fig. 5.2.44, it can be observed that scalogram-based Extra Trees
ML model achieved an overall reasonable performance of precision com-
pared to recall for CAS and DAS class of sounds but with significantly worse
diagnostic performance for the DAS class as exemplified via precision to
recall area under the curve (PR-AUC). At medium levels of GWN (SNR-40)
in all three classes, the DAS class felt the most significant impact. Finally,
once GWN is increased to SNR-20 level, we see an extremely negative
impact on DAS class with a lesser impact on CAS. The NAS class shows
robustness, but the results are worse than no GWN level, as the PR-AUC
shows.
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Fig. 5.2.44. PR curve showing significant impact (P = 0.000) of GWN
on Extra Trees model’s ability to identify lung sounds correctly
(from top to bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-
tated sound, DAS — discontinuous auscultated sound.

98



Scalogram ROC curve - Scalogram ROC curve -

Extra Trees (no GWN) Extra Trees (GWN SNR-40)
1.0 R — 1.0
g 08 P j.).___.. %, -E .
] _,J"JJ r " v
Z 06 R £ 06
g | A 2
o 044 e 2 04
v IJ v
3 [f I s
= 0.2 o0 = 0.2
0.0 0.0 -
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False positive rate False positive rate
— Scalogram ROC curve (class CAS) (area = 0.774) — Scalogram ROC curve (class CAS) (area = 0.554)
Scalogram ROC curve (class DAS) (area = 0.756) Scalogram ROC curve (class DAS) (area = 0.658)
— Scalogram ROC curve (class NAS) (area = 0.632) — Scalogram ROC curve (class NAS) (area = 0.523)
Scalogram ROC curve -
Extra Trees (GWN SNR-20)
1.0
£ 08
S
2
s 0.6
w
=]
2 04
v
2
= 0.2
0.0

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

— Scalogram ROC curve (class CAS) (area = 0.472)
Scalogram ROC curve (class DAS) (area = 0.482)
— Scalogram ROC curve (class NAS) (area = 0.509)

Fig. 5.2.45. ROC curve showing significant impact (P = 0.000) of GWN
on Extra Trees model’s ability to identify lung sounds correctly
(from top to bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-
tated sound, DAS — discontinuous auscultated sound.

From Fig. 5.2.45, the spectrogram-based Extra Trees model can observe
the impact of GWN levels on the true positive rate (TPR) compared to the
false positive rate (FPR) in the receiver operating characteristic (ROC) curve.
At no GWN added to the level, the model shows a reasonable performance,
especially for CAS, followed by DAS classes with weaker (but only of aver-
age standard) performance for the NAS class, as seen from the ROC graph’s
area under the curve (AUC). The model performance drops significantly at
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medium levels of GWN (SNR-40) for all three groups, especially CAS and
NAS. Finally, once GWN at SNR-20 is added, all three classes will be heavily
impacted. The spectrogram-based Extra Trees ML model shows reasonable
performance at no GWN level. However, once GWN is added even at
medium level (SNR-40), the model loses its power with a drop of TPR
compared to FPR, especially for CAS and NAS sound classes identification.
Therefore, the Extra Trees model is only useful, according to the ROC curve,
without GWN, because it lacks robustness to noise.

Scalogram confusion matrix - Scalogram confusion matrix -
Gradient Boosting (no GWN) Gradient Boosting (GWN SNR-40)
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Fig. 5.2.46. Confusion metrics showing significant impact (P = 0.000) of
GWN on gradient boosting model’s ability to identify lung sounds correctly
(from top to bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-
tated sound, DAS — discontinuous auscultated sound.
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From Fig. 5.2.46, the impact of Gaussian white noise (GWN) is observed
on true positive (TP), true negative (TN), false positive (FP) and false nega-
tive (FP) as seen in the scalogram-based Gradient Boosting ML model’s
confusion matrix. At no GWN level, 39/70 CAS was identified correctly,
16/50 of the DAS class was correctly identified, and 54/130 of the NAS were
correctly identified. The confusion matrix at SNR-40 (medium levels) shows
a decrease in model performance with a drop-in TP for CAS 28/70 but main-
tained a good performance for DAS and NAS classes with 26/50 and 94/130,
respectively. The increase in the GWN level to SNR-20 worsens the model’s
performance in discriminating between the three, leading to the machine
model losing its power to discriminate between sound classes with only 3/50
and 10/130 for DAS and NAS correctly identified. The CAS class at the
highest GWN was identified at 63/70 score. This showed that even though
the model had a reasonable diagnostic accuracy for all three sound classes at
no GWN level, also it showed robustness when GWN levels were increased
to medium level (SNR-40), yet, class discrimination significantly worsened
with GWN SNR-20 level, where all classes were mostly identified as NAS.

From Fig. 5.2.47, it can be observed that scalogram-based Gradient
Boosting ML model achieved an overall reasonable to good performance of
precision to recall (PR) for NAS and DAS, with the worst performance
observed for CAS as exemplified via PR-AUC. At medium levels of GWN
of SNR-40 in all three sound classes, the DAS class recognition was the most
significant impacted, followed closely by worst results in CAS class
identification. Finally, once GWN is increased to SNR-20 levels, it negatively
impacts CAS class with a lesser impact on DAS class sound recognition. The
Gradient Boosting ML model shows some robustness in NAS class identifi-
cation; nonetheless, all three classes’ PR-AUC values drop significantly at
high levels of GWN.
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Fig. 5.2.47. PR curve showing significant impact (P = 0.000) of GWN
on Gradient Boosting model’s ability to identify lung sounds correctly
(from top to bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-
tated sound, DAS — discontinuous auscultated sound.
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Fig. 5.2.48. ROC curve showing significant impact (P = 0.000) of GWN
on Gradient Boosting model’s ability to identify lung sounds correctly
(from top to bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-
tated sound, DAS — discontinuous auscultated sound.
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From Fig. 5.2.48, the impact of Gaussian white noise (GWN) levels on
the true positive rate (TPR) compared to the false positive rate (FPR) in the
receiver operating characteristic (ROC) curve can be observed for the spec-
trogram-based Gradient Boosting ML model. At no GWN level, the model
shows a good performance for DAS and a reasonable performance for CAS
sound classes identification, but only a very average performance for NAS
class, as seen from the area under the ROC graph’s curve (ROC-AUC) values.
The model performance drops significantly at medium levels of GWN (SNR-
40) for two sound groups: CAS and NAS. Finally, once GWN is increased to
SNR-20, the performance of ML module to identify CAS, especially NAS,
becomes abysmal, with DAS class identification showing robustness. The
spectrogram-based Gradient Boosting shows good to reasonable performance
at no GWN level, depending on the sound class. However, at GWN SNR-40
level, the TPR, compared to FPR, dropped off for CAS and NAS identi-
fication quite significantly and it worsened at SNR-20 level. Therefore, even
though the Gradient Boosting ML model shows average performance without
ambient noise added, the performance varies between sound classes, and this
model lacks robustness even at medium GWN levels.

From Fig. 5.2.49, the impact of Gaussian white noise (GWN) is observed
on true positive (TP), true negative (TN), false positive (FP) and false
negative (FP) as seen in the scalogram-based Histgradient ML model’s con-
fusion matrix. At no GWN added levels, 34/70 CAS was identified correctly,
with only a paltry 26/50 DAS class and 88/130 of NAS identified. The
confusion matrix at SNR-40 (medium GWN levels) shows a decrease in the
model's performance with a drop in TP for CAS and DAS classes, only 25/70
and 12/50 correctly identified for both. The DAS sound class identification
showed robustness with a score of 41/50. The increase in the GWN level to
SNR-20 worsens the model’s performance in discriminating between the
three sound classes, with DAS and NAS identification standing at 5/50 and
14/130, respectively. The DAS class at the highest GWN was identified at
62/70 score. This showed that the scalogram-based Histgradient ML model
had a reasonable performance at no GWN, but then, once GWN was added,
the model’s power to distinguish between sound groups was completely lost
at the model classified all three classes mainly, falsely. This model lacks any
robustness to GWN.
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Fig. 5.2.49. Confusion metrics showing significant impact (P = 0.000) of
GWN on Histgradient model’s ability to identify lung sounds correctly
(from top to bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS— continuous auscul-
tated sound, DAS — discontinuous auscultated sound.

From Fig. 5.2.50, it can be observed that scalogram-based Histgradient
ML model achieved an overall reasonable performance for precision to recall
(PR) for NAS and DAS, with the worst performance observed for CAS as
exemplified via area under the curve of PR graph (PR-AUC). At medium
levels of GWN (SNR-40), all three sound classes are impacted more or less
equally negatively. Finally, once GWN is increased to SNR-20 level, we see
a significantly negative impact on CAS classes’ identification with a lesser
impact on NAS class. The DAS class recognition shows some robustness
from GWN SNR-40 to SNR-20 levels, but the PR-AUC values are quite poor.
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Fig. 5.2.50. PR curve showing significant impact (P = 0.000) of GWN
on Histgradient model’s ability to identify lung sounds correctly (from top
to bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-
tated sound, DAS — discontinuous auscultated sound.
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Fig. 5.2.51. ROC curve showing significant impact (P = 0.000) of GWN
on Histgradient model’s ability to identify lung sounds correctly (from top
to bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-
tated sound, DAS — discontinuous auscultated sound.

From Fig. 5.2.51, the impact of GWN levels on the true positive rate
(TPR) as compared to the false positive rate (FPR) in the receiver operating
characteristic (ROC) curve can be observed for the scalogram-based Histgra-
dient ML model. At no GWN level, the model shows a good performance for
DAS sound class recognition and a reasonable performance for CAS class,
but only a very average performance for NAS class, as seen from the area
under the ROC graph (ROC-AUC) curve. The model performance drops
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significantly at medium levels of GWN (SNR-40) for two sound class groups:
CAS and NAS. Finally, once GWN at SNR-20 is added, the model’s
diagnostic accuracy performance of CAS, especially NAS, classes becomes
abysmal, with DAS class identification showing robustness. Depending on
the class, the scalogram-based Histgradient model shows good to reasonable
performance at no GWN levels. However, at GWN SNR-40 level, the TPR
drop off for CAS and NAS identification significantly and worsens at SNR-
20 level. Therefore, even though the model shows on average performance
without ambient noise added, the performance varies between classes and
lacks robustness even at medium GWN levels.
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Fig. 5.2.52. Confusion metrics showing significant impact (P = 0.000) of
GWN on K-NN model’s ability to identify lung sounds correctly (from top to
bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-
tated sound, DAS — discontinuous auscultated sound, K-NN — K-Nearest Neighbors.
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From Fig. 5.2.52, the impact of Gaussian white noise is observed on true
positive (TP), true negative (TN), false positive (FP) and false negative (FP),
as seen in the scalogram-based K-Nearest Neighbors (K-NN) ML model’s
confusion matrix. Atno GWN level, 33/70 CAS was identified correctly, with
only a paltry 8/50 of DAS class correctly identified, and 69/130 of NAS
correctly identified. The confusion matrix at SNR-40 (medium GWN level)
shows a decrease in the model’s performance with a drop in TP for CAS and
NAS classes, with only 4/70 and 4/130, respectively, correctly identified for
both. Yet, the DAS class identification showed robustness with a score of
41/50. The increase in the GWN levels to SNR-20 more or less maintained
this contrast between class identification with CAS and NAS identification
standing at 6/70 and 2/130, respectively. The DAS class at the highest GWN
was identified at 62/70 score. This showed that the scalogram-based K-NN
model had a poor TP performance at no GWN, but then once GWN was
added, the model’s power to distinguish between classes was utterly lost as
the model classified all three sound classes mostly belonging to DAS class.

From Fig. 5.2.53, it can be observed that scalogram-based K-Nearest
Neighbors (K-NN) model achieved an overall poor performance of precision
to recall (PR) for NAS, CAS, with the worst performance observed for DAS
sound class, as exemplified via area under the curve (AUC) for PR graph (PR-
AUC). Medium levels of GWN (SNR-40) negatively affected all three sound
classes’ recognition, as seen in the drop of the PR curve lines; this is espe-
cially true for DAS and CAS classes, with only a slight drop being observed
in the NAS class. Finally, once GWN was increased to SNR-20 level, an
extremely negative its impact on all three sound classes’ identification is
observed. This is particularly true for the DAS class. The overall performance
of the K-NN model from no GWN to highest levels of GWN (SNR-20) is
Very poor.
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Fig. 5.2.53. PR curve showing significant impact (P = 0.000) of GWN

on K-NN model’s ability to identify lung sounds correctly
(from top to bottom).

Note this model’s performance was extremely poor. GWN — Gaussian white noise, NAS —
normal auscultated sound, CAS— continuous auscultated sound, DAS — discontinuous
auscultated sound, K-NN — K-Nearest Neighbors.
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Fig. 5.2.54. ROC curve showing significant impact (P = 0.000) of GWN
on K-NN model’s ability to identify lung sounds correctly
(from top to bottom)
Note this model’s performance was extremely poor. GWN — Gaussian white noise, NAS —

normal auscultated sound, CAS — continuous auscultated sound, DAS — discontinuous
auscultated sound.

From Fig. 5.2.54, the impact of GWN levels on the true positive rate
(TPR) as compared to the false positive rate (FPR) in the receiver operating
characteristic (ROC) curve can be observed for the scalogram-based K-
Nearest Neighbors (K-NN) model. At no GWN added level, the model shows
only reasonable performance for the CAS class identification, whilst DAS
and NAS classes recognition show poor performance of this ML model, as
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seen from the area under the curve of the ROC graph (ROC-AUC). Additio-
nally, the model performance drops significantly at medium levels of GWN
(SNR-40) for all three sound groups identification. Finally, once GWN at
SNR-20 is added to all three sound classes, the scalogram-based K-NN
model’s performance worsen for all three classes. Therefore, this model
performs poorly overall without GWN added and lacks robustness even at
medium ambient noise levels, as seen with TPR and ROC-AUC value drop.
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Fig. 5.2.55. Confusion metrics showing significant impact (P = 0.000) of
GWN on LightGBM model’s ability to identify lung sounds correctly (from
top to bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-

tated sound, DAS — discontinuous auscultated sound, LightGBM — Light Gradient Boosting
Machine.
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From Fig. 5.2.55, the impact of Gaussian white noise is observed on true
positive (TP), true negative (TN), false positive (FP) and false negative (FP)
as seen in the scalogram-based Light Gradient Boosting Machine (LightGBM)
model’s confusion matrix. At no GWN level, 29/70 CAS was identified
correctly, with 24/50 of DAS class correctly identified and 88/130 of NAS
correctly identified. The confusion matrix at SNR-40 (medium GWN levels)
shows a decrease in the model’s performance with a drop in TP for DAS and
NAS classes, with only 13/50 and 60/130, respectively, correctly identified
for both. The CAS identification showed robustness with a value of 40/70.
The increase in the GWN level to SNR-20 exaggerated contrasts between
class identification with DAS and NAS standing at only 4/50 and 18/130,
respectively. This showed that the scalogram-based LightGBM model had a
reasonable performance at no GWN, but once GWN was added first at SNR-
40, and later at SNR-20, the model lost its power to distinguish between TP
and FP classes and with a tendency to classify all classes as CAS.

From Fig. 5.2.56, it can be observed that the scalogram-based Light
Gradient Boosting Machine (LightGBM) model achieved an overall reaso-
nable performance of precision to recall (PR) for NAS, DAS with slightly
worse performance is observed for CAS as exemplified via the PR graph's
area under the curve (PR-AUC). At medium levels of GWN (SNR-40) on all
three sound classes, a drop of precision to recall is observed mainly for CAS
and DAS classes, with the highest score at the medium level being scored by
the NAS class. Finally, once GWN is increased to SNR-20 level, we see an
extremely negative impact on all three sound classes’ recognition, especially
CAS, performing the worst. Therefore, even though the scalogram-based
LightGBM model achieves reasonable PR performance for no GWN level,
the model lacks robustness even at medium levels of GWN.
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Scalogram confusion matrix —
Logistic Regression (no GWN)
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Fig. 5.2.56. PR curve showing significant impact (P = 0.000) of GWN
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on LightGBM model’s ability to identify lung sounds correctly (from top to

bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-
tated sound, DAS — discontinuous auscultated sound, LightGBM — Light Gradient Boosting

Machine.
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Fig. 5.2.57. ROC curve showing significant impact (P = 0.000) of GWN
on LightGBM model’s ability to identify lung sounds correctly (from top to
bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-

tated sound, DAS — discontinuous auscultated sound, LightGBM — Light Gradient Boosting
Machine.
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From Fig. 5.2.57, the impact of GWN levels on the true positive rate
(TRP) as compared to the false positive rate (FPR) in the ROC curve can be
observed for the scalogram-based Light Gradient Boosting Machine
(LightGBM) model. At no GWN level, the model shows a very good
performance from DAS, good performance for CAS and poor performance at
NAS recognition, as seen from ROC-AUC (area) values. The model
performance drops significantly at medium levels of GWN (SNR-40) for two
sound groups: CAS and NAS. The drop is very slight for the DAS class.
Finally, once GWN at SNR-20 is added, the LightGBM TRP rate drops for
NAS, whilst DAS performance continues strong and CAS, though much
weaker performance, is not impacted by increased levels of GWN as
compared to medium GWN levels. Through DAS sound class recognition
showed resilience and maintained very good TPR. However, the CAS shows
poor performance, and it is even worse for NAS once GWN is increased to
SNR-40 levels. Therefore, the scalogram-based LightGBM model has reaso-
nable performance at no GWN levels, with caveat variability depending on
the group. Additionally, the performance becomes very poor even at medium
levels of GWN for CAS and NAS classes. Therefore, the model lacks
robustness.

From Fig. 5.2.58, the impact of Gaussian white noise (GWN) is clearly
observed on true positive (TP), true negative (TN), false positive (FP) and
false negative (FP), as seen in the scalogram-based Logistic Regression ML
model’s confusion matrix. At no GWN level, 38/70 CAS was identified
correctly, with 26/50 of DAS class correctly identified and 78/130 of NAS
correctly identified. The confusion matrix at SNR-40 (medium GWN level)
shows an extremely sharp decrease in model performance with a drop in TP
for DAS and NAS class, with zero correctly identified for both, but a perfect
score for TP for NAS and 130/130. With the increase in the GWN levels to
SNR-20, the exact same score was maintained for all three classes. This
showed that the scalogram-based Logistic Regression ML model had a good
performance at no GWN, but even at medium levels of GWN (SNR-40), had an
extremely sharp drop in the diagnostic ability for CAS and NAS sounds with
a strong bias towards falsely diagnosing these sounds as CAS. This shows the
extremely poor robustness of this model to GWN ambient noise.
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Fig. 5.2.58. Confusion metrics showing significant impact (P = 0.000)
of GWN on Logistic Regression model’s ability to identify lung sounds
correctly (from top to bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-
tated sound, DAS — discontinuous auscultated sound.

From Fig. 5.2.59, it can be observed that scalogram-based Logistic
Regression ML model achieved an overall reasonable performance of
precision to recall (PR) for NAS, CAS, with the worst performance observed
for DAS as exemplified via area under the curve for PR (PR-AUC) graph. At
medium levels of GWN (SNR-40) on all three sound classes, a drop of
precision to recall is observed mainly for DAS, whilst NAS shows the
greatest robustness to medium levels of GWN. Finally, once GWN was
increased to SNR-20 level, an extremely negative impact on all three sound
classes’ recognition is observed. This is especially true for DAS class
identification by the model. The scalogram-based LR ML model does not
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seem to function properly, as three classes’ lines are spread apart with overall
very low precision.
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Fig. 5.2.59. PR curve showing significant impact (P = 0.000) of GWN
on Logistic Regression model’s ability to identify lung sounds correctly
(from top to bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-
tated sound, DAS — discontinuous auscultated sound.
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Fig. 5.2.60. ROC curve showing significant impact (P = 0.000) of GWN

on Logistic Regression model’s ability to identify lung sounds correctly
(from top to bottom)

0.8 1.0

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-
tated sound, DAS — discontinuous auscultated sound.

From Fig. 5.2.60, the scalogram-based Logistic Regression model can
observe the impact of Gaussian white noise (GWN) levels on the true positive
rate (TPR) compared to the false positive rate (FPR) in the receiver operating
characteristic (ROC) curve. At no GWN added level, the model shows a very
good performance for DAS, good performance for CAS and poorer
performance for NAS sound class identification, as seen from the area under
the curve of the ROC graph’s (ROC-AUC) values. The model performance
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drops significantly at medium levels of GWN (SNR-40) for all three classes.
Finally, once GWN at SNR-20 level is added, the model’s performance
worsens for all three sound classes. Therefore, the scalogram-based Logistic
Regression model shows diagnostic power only at no GWN level, but with
the caveat of having variability between all three sound classes, the TPR
drops off even at medium levels of GWN and gets worse at higher levels.
Hence, the model lacks any robustness to GWN.
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Fig. 5.2.61. Confusion metrics showing significant impact (P = 0.000) of
GWN on MLP model’s ability to identify lung sounds correctly (from top to
bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-

tated sound, DAS - discontinuous auscultated sound, MLP classifier — Multilayer
Perceptron.
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From Fig. 5.2.61, the impact of Gaussian white noise (GWN) is clearly
observed on true positive (TP), true negative (TN), false positive (FP) and
false negative (FP), as seen in the scalogram-based Multilayer Perceptron
(MLP) model’s confusion matrix. At no GWN level, 34/70 CAS was
identified correctly, 22/50 of the DAS class was correctly identified, and
81/130 of the NAS were correctly identified. The confusion matrix at SNR-
40 (medium GWN levels) shows a sharp decrease in the model performance
with a drop in TP with only 1/70 correctly for the CAS class and zero
correctly identified for DAS class, but a good score for TP for NAS and
125/130. The increase in the GWN levels to SNR-20 level continued DAS
and CAS poor classification performance with 3/70 and 0/50, with only NAS
scoring highly with 124/130. This showed that the scalogram-based MLP
model had a good performance at no GWN level, but even at medium levels
of GWN (SNR-40), it had a lack of diagnostic ability for CAS and DAS
sounds with a strong bias towards falsely diagnosing these sounds as NAS.

From Fig. 5.2.62, it can be observed, that the scalogram-based Multilayer
Perceptron (MLP) model achieved an overall reasonable to poor performance
of precision to recall (PR) for NAS, CAS classes, with the worst performance
observed for DAS sound class, as exemplified via area under the curve for
PR graph (PR-AUC). At medium levels of GWN (SNR-40) on all three, a
drop of precision to recall. The worst performance by the MLP model is
observed for DAS class, whilst NAS class identification shows reasonable
robustness to medium level of GWN. Finally, once GWN is increased to
SNR-20 level, we see a significantly negative impact on all three sound
classes’ recognition, especially DAS and CAS identification. Therefore, at
the higher GWN levels, the model stops being an effective diagnostic tool.
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Fig. 5.2.62. PR curve showing significant impact (P = 0.000) of GWN

on MLP model’s ability to identify lung sounds correctly
(from top to bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous
auscultated sound, DAS — discontinuous auscultated sound, MLP classifier — Multilayer

Perceptron.
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Fig. 5.2.63. ROC curve showing significant impact (P = 0.000) of GWN
on MLP model’s ability to identify lung sounds correctly
(from top to bottom)
GWN — Gaussian white noise, NAS — normal auscultated sound, CAS— continuous auscul-

tated sound, DAS - discontinuous auscultated sound, MLP classifier — Multilayer
Perceptron.

From Fig. 5.2.63, the impact of GWN levels on the true positive rate
(TPR) as compared to the false positive rate in the receiver operating
characteristic (ROC) curve can be observed for the scalogram-based Multi-
layer Perceptron (MLP) model. At no GWN level, the model shows a good
performance for DAS and CAS classes but poorer performance for NAS class
recognition, as seen from the ROC graph’s area under the curve (ROC-AUC)
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values. The model performance drops significantly at medium level of GWN
(SNR-40) for all three sound classes. Finally, once GWN at SNR-20 is added,
the performance becomes even worse for all three sound classes. Therefore,
the scalogram-based MLP model shows reasonable diagnostic power only at
no GWN level. However, the TRP drops off even at medium GWN levels

and worsens at higher levels. Hence, the model lacks any robustness to
ambient noise.
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Fig. 5.2.64. Confusion metrics showing significant impact (P = 0.000) of
GWN on Random Forest model’s ability to identify lung sounds correctly
(from top to bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-
tated sound, DAS — discontinuous auscultated sound.
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From Fig. 5.2.64, the impact of Gaussian white noise is clearly observed
on true positive (TP), true negative (TN), false positive (FP) and false nega-
tive (FP) as seen in the scalogram-based Random Forest ML model’s
confusion matrix. At no GWN level, 31/70 CAS was identified correctly,
16/50 of the DAS class was correctly identified, and 106/130 of the NAS
were correctly identified. The confusion matrix at SNR-40 (medium GWN
levels) shows an extremely sharp decrease of the model performance with a
slight drop in TP for the NAS class with 95/130 correctly identified, whilst
showing an extremely sharp drop in performance for DAS identification, with
3/50 score and CAS 19/70 score. The increase of the GWN levels to SNR-20
level shows a continued significant drop in the model’s performance for DAS
and NAS class sound identification with 0/50 and 21/130, respectively. Only
the CAS class exhibiting a good TP score of 60/70. Overall, the scalogram-
based Random Forest ML model showed very poor performance for DAS and
NAS sound classes recognition and poor robustness to GWN. The model
misdiagnosed DAS and CAS as NAS at GWN SNR-40. Whilst at GWN
SNR-20, the bias turned towards misdiagnosing NAS and DAS as CAS
classes. This showed the model's limited diagnostic ability, poor performance
under GWN conditions, and unreliability as diagnostic tool.

From Fig. 5.2.65, it can be observed that the scalogram-based Random
Forest model achieved an overall reasonable performance of precision to
recall (PR) for NAS, CAS with slightly worse performance observed for DAS
sound class identification, as exemplified via area under the curve for PR
(PR-AUC) graph. At medium levels of GWN (SNR-40) on all three sound
classes, a drop of precision to recall is observed mainly for DAS class, whilst
NAS shows the greatest robustness to medium levels of GWN. Finally, once
GWN is increased to SNR-20 (highest GWN level), we see a significantly
negative impact on all three sound classes identification, especially DAS,
whilst NAS continues to show the greatest robustness through all levels of
GWN.
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Fig. 5.2.65. PR curve showing significant impact (P = 0.000) of GWN
on Random Forest model’s ability to identify lung sounds correctly
(from top to bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-
tated sound, DAS — discontinuous auscultated sound.
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Fig. 5.2.66. ROC curve showing significant impact (P = 0.000) of GWN
on Random Forest model’s ability to identify lung sounds correctly
(from top to bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-
tated sound, DAS — discontinuous auscultated sound.

From Fig. 5.2.66, the impact of GWN levels on the true positive rate
(TPR) as compared to the false positive rate in the ROC curve can be obser-
ved for the scalogram-based Random Forest ML model. At no GWN level,
the model shows a good performance for CAS class, above average for DAS
class and poor performance for CAS class identification, as seen from ROC-
AUC (area) values. The model performance drops significantly at medium
levels of GWN (SNR-40) for all three sound classes, with some robustness
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shown for the DAS class. Finally, once GWN at SNR-20 level is added, the
Random Forest model’s performance worsens for all three sound classes
recognition. Therefore, the scalogram-based Random Forest model shows
diagnostic reasonable power only at no GWN level, with some robustness
shown at medium GWN levels, but only for the DAS sound class. Once the
GWN is increased to the highest level, the model loses its ability to classify

any of the three sound classes as it lacks robustness to the highest GWN
levels.

Scalogram confusion matrix - Scalogram confusion matrix -
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Fig. 5.2.67. Confusion metrics showing significant impact (P = 0.000)
of GWN on SVM model’s ability to identify lung sounds correctly
(from top to bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-
tated sound, DAS — discontinuous auscultated sound, SVM — Support Vector Machines.
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From Fig. 5.2.67, the impact of Gaussian white noise is observed on true
positive (TP), true negative (TN), false positive (FP) and false negative (FP)
scores in the scalogram-based SVM model’s confusion matrix. At no GWN
levels, 14/70 CAS was identified correctly, 15/50 of the DAS class was
correctly identified, and 110/130 of the NAS were correctly identified. The
confusion matrix at SNR-40 (medium GWN level) shows a highly sharp
decrease in the model’s performance, the drop in TP for the NAS and DAS
classes with extremely low with scores of 1/130 and 0/50, respectively. The
increase in the GWN to SNR-20 level, shown a continued significant drop in
the model’s ability to identify DAS and NAS sound classes with 0/50 and
0/130, respectively, while only the CAS class maintained a TP score of 70/70.
The SVM model overall showed abysmal performance at all three sound
classes’ identification, poor robustness to GWN levels and bias towards
mislabelling sound classes as CAS at highest GWN levels.

From Fig. 5.2.68, it can be observed that scalogram-based Support
Vector Machines (SVM) achieved an overall reasonable to poor performance
of precision to recall (PR) for NAS, CAS identification with slightly worse
performance is observed for DAS as exemplified by the area under the curve
(AUC) for PR graph (PR-AUC). At medium levels of GWN (SNR-40) on all
three classes precision to recall is reduced, especially for DAS class
identification, whilst NAS shows the greatest robustness to medium levels of
GWN. Finally, once GWN is increased to SNR-20 levels, we see a signi-
ficantly negative impact on SVM models’ ability to identify correctly all three
classes, especially DAS. The scalogram based SVM model shows poor
robustness at medium levels of GWN and complete loss to discriminated
three classes of lung sounds at the highest levels of GWN.
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Fig. 5.2.68. PR curve showing significant impact (P = 0.000) of GWN on
SVM model’s ability to identify lung sounds correctly (from top to bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-
tated sound, DAS — discontinuous auscultated sound, SVM — Support Vector Machines.
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Fig. 5.2.69. ROC curve showing significant impact (P = 0.000) of GWN on
SVM model’s ability to identify lung sounds correctly (from top to bottom)
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GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-

tated sound, DAS — discontinuous auscultated sound, SVM — Support Vector Machines.

From Fig. 5.2.69, the impact of GWN levels on the true positive rate
(TPR) as compared to the false positive (FPR) rate in the receiver operating
characteristic (ROC) graph can be observed for the scalogram-based Support

Vector Machines (SVM) ML model. At no GWN level, the model shows a

good performance for DAS, above average for CAS and poorer performance

for NAS sound classes identification, as seen from the area under the curve
of ROC (ROC-AUC) values. The model performance drops significantly at

medium levels of GWN (SNR-40) for all three classes. Finally, once GWN
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with SNR-20 level is added, the performance becomes random (all the lines
for all three classes adhere closely to the dashed random line). Therefore, the
scalogram-based SVM model shows reasonable diagnostic power to identify
lung sounds only at no GWN level, but lacks any robustness, even at medium
level of GWN, as the model loses its capability to predict any of the three
sound classes correctly.
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Fig. 5.2.70. Confusion metrics showing significant impact (P = 0.000) of
GWN on XGBoost model’s ability to identify lung sounds correctly
(from top to bottom)

GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-

tated sound, DAS — discontinuous auscultated sound, XGBoost — Extreme Gradient Boosting
classifier.
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From Fig. 5.2.70, the impact of Gaussian white noise is clearly observed
on true positive (TP), true negative (TN), false positive (FP) and false nega-
tive (FP) as seen in the scalogram-based XGBoost model’s confusion matrix.
At no GWN added levels, 31/70 CAS was identified correctly, 28/50 of the
DAS class was correctly identified, and 90/130 of the NAS were correctly
identified. The confusion matrix at SNR-40 (medium levels) shows a sharp
decrease in performance of the model performance with a sharp drop in TP
for the NAS class with only 48/130 correctly identified, whilst showing
improved performance for DAS with 38/50 correctly and a slight decrease in
CAS with 22/70 score. The increase in the GWN levels of SNR-20 saw a
continued significant drop in the model’s performance for DAS and NAS
class sound identification with 0/50 and 6/130, respectively. Only the CAS
class maintaining an extremely good TP score of 66/70. Overall, the scalo-
gram-based XGBoost ML model showed reasonable performance for identi-
fying DAS and CAS sounds at no GWN added levels, with some robustness
to medium GWN levels but a bias towards mislabelling sound as NAS at
highest ambient noise level.

From Fig. 5.2.71, it can be observed that scalogram-based XGBoost
model achieved an overall reasonable performance except for one sound
class. The precision to recall (PR) graph shows reasonable performance of
the model in identifying NAS and DAS classes with worse performance
observed for DAS, as exemplified via PR area under the curve (PR-AUC)
scores. At medium level of GWN (SNR-40) recall scores for all three sound
classes are negatively impacted. Only NAS shows the greatest robustness to
medium level of GWN. Finally, once GWN is increased to SNR-20 level, we
see an extremely negative impact on all three classes, especially CAS,
followed by DAS, whilst NAS continues to show robustness to extreme noise.
Nonetheless, once GWN levels are increased to SNR-20, the precision levels
drop significantly for CAS and DAS lung sound classes, meaning that the
model becomes useless at the highest GWN.
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Fig. 5.2.71. PR curve showing significant impact (P = 0.000) of GWN
on XGBoost model’s ability to identify lung sounds correctly
(from top to bottom)
GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-

tated sound, DAS — discontinuous auscultated sound, XGBoost — Extreme Gradient Boosting
classifier.
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Fig. 5.2.72. ROC curve showing significant impact (P = 0.000) of GWN
on XGBoost model’s ability to identify lung sounds correctly
(from top to bottom)
GWN — Gaussian white noise, NAS — normal auscultated sound, CAS — continuous auscul-

tated sound, DAS — discontinuous auscultated sound, XGBoost — Extreme Gradient Boosting
classifier.

From Fig. 5.2.72, the impact of GWN levels on the true positive rate as
compared to the false positive rate in the ROC curve can be observed for the
scalogram-based Extreme Gradient Boosting classifier (XGBoost) model. At
no GWN level, the model shows a good performance for all three sound
classes, with NAS class identification being the worst out of the three. The
model’s performance drops significantly at medium level of GWN (SNR-40)
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for two classes: CAS and NAS. XGBoost shows strong robustness for the
DAS class at medium level of GWN. Finally, once GWN is increased to
SNR-20 level, the model loses its discrimination power to identify sound
classes correctly, with greatest negative impact on ML model’s identification
of NAS sound class. Therefore, the scalogram-based XGBoost model is only
viable at no GWN level, and higher levels of GWN (SNR-20) makes the
model unviable to distinguish all three classes.

Table 5.2.1. Twelve-spectrogram based models’ performance according to

ROC-AUC scores
Spectrogram-based ROC-AUC, Test | Degrees of P-value
model median (IQR) statistic | freedom
AdaBoost 0.800 (0.689-0.853)
CatBoost 0.857 (0.764-0.880)
Extra Trees 0.820 (0.691-0.859)
Gradient Boosting 0.874 (0.772-0.897)
Histgradient 0.865 (0.802—-0.894)
K-NN 0.751 (0.638-0.753)
- 803 11 <0.001
LightGBM 0.856 (0.782-0.879)

Logistic Regression

0.863 (0.781-0.876)

MLP

0.863 (0.786-0.902)

Random Forest

0.833 (0.694-0.873)

SVM

0.836 (0.746-0.853)

XGBoost

0.871 (0.782-0.895)

The best-performing spectrogram-based algorithms, according to the median performance,
were all boosting models: Gradient Boosting, XGBoost, Histgradient. Histgradient had second
highest medium, but narrower interquartile range with highest Q1 out of the top three models.
IQR - interquartile range.
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Table 5.2.2. Twelve-scalogram based models’ performance according to

ROC-AUC scores
Scalogram-based ROC-AUC, Test Degrees of P-value
model median (IQR) statistic freedom
AdaBoost 0.735 (0.658-0.847)
CatBoost 0.794 (0.679-0.881)
Extra Trees 0.746 (0.590-0.788)
Gradient Boosting 0.752 (0.685-0.867)
Histgradient 0.733 (0.671-0.850)
K-NN 0.590 (0.528-0.658)
LightGBM 0.732 (0.673-0.847) S74 i <0.001

Logistic Regression

0.756 (0.671-0.814)

MLP

0.741 (0.590-0.788)

Random Forest

0.768 (0.635-0.808)

SVM

0.740 (0.658-0.810)

XGBoost

0.727 (0.659-0.859)

The best-performing scalogram-based algorithms according to the median performance were
one boosting, one tree based and one classical model, they were in the upper quartile of
performance: CatBoost, Random Forest, and Logistic Regression. IQR — interquartile range.
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Table 5.2.3. Twelve spectrogram-based models’ compared to twelve scalo-
gram-based models’ performance according to ROC-AUC scores

Spectrogram of 12 ML Scalogram of 12 ML
model, median (IQR) model, median (IQR)

0.837 (0.638-0.902) 0.735 (0.528-0.881) 583275 <0.001
Wilcoxon Test shows significant difference between 12 ML models based on spectrogram

and scalogram, with spectrogram-based models having a much higher median values as
compared to scalograms-based models. IQR — Interquartile range.

Test statistic P-value

5.3. Medical Faculty students’ performance

In total 45 medical students attempted to learn three classes of lung
sounds, over a period of 4 days and then performed a test under three levels
of GWN noise (no added noise, GWN SNR-40 and GWN SNR-20).

The models all tested for overall impact of GWN on their performance
via Friedman test and post hoc analysis.

From Fig. 5.3.1 the impact of different levels of Gaussian white noise
(GWN) can be observed on three classes of lung sound’s identification.

The noise levels are expressed in signal-to-noise ratio (SNR) from lowest
levels (no GWN), medium (SNR-40) and to highest levels (SNR-20). Fried-
man test showed ability to identify NAS and DAS significantly varied
(P=0.042, 0.021, respectively) at the three levels of GWN, whilst no signi-
ficant impact of GWN levels on CAS sounds were observed (P=0.311).

Post hoc comparison was performed to evaluate the influence of the three
levels of GWN on the ability to recognise NAS and DAS sound classes.

Statistically significant differences were found in lung sound recognition
between no GWN and SNR-40 for NAS, between no GWN and SNR-40 and
between SNR-40 and SNR-20 for DAS (P=0.016, 0.013, 0.023, respecti-
vely).
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A box whisker plot of 45 medical students’ test scores under three different levels
of GWN for three different classes of lung sounds
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Fig. 5.3.1. Medical students’ exam scores for three classes of lung sounds
under different levels of GWN. Impact of three levels of GWN on the ability
for students to recognise continuous (CAS), discontinuous (DAS) and
normal (NAS) lung sound classes.

GWN — Gaussian white noise, SNR — signal to noise ratio, NAS — normal auscultated sound,
DAS — discontinuous auscultated sound, CAS — continuous auscultated sound.

5.4. Comparison of best ML model’s performance against Medical
Faculty students’ performance under different levels of GWN

Finally, the TN, TP, FN, FP values of students’ scores were used to
calculate MCC, specificity and sensitivity for each class of the sound under
each level of GWN (no GWN, GWN SNR-40, GWN SNR-20).

The results were used to plot a box and whisker graph and Friedman test
with post hoc analysis was performed (Fig. 5.4.1 to Fig. 5.4.3).
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From Fig. 5.4.1 the impact of GWN on machine learning model and
Medical Faculty students’ diagnostic accuracy can be observed, by the com-
parison of Matthews correlation coefficient (MCC) score.

Students performed similarly to the spectrogram-based Histgradient
model in the no GWN added condition, as no significant differences between
the two study groups (MFS vs. ML) were observed for the two sound classes
identification rates: NAS and CAS (P > 0.05). However, there was a
statistically significant difference between the two study groups for the DAS
class of lung sound identification (P = 0.002). The ML models’ MCC scores
of 0.471 (0.415 to 0.543), 0.587 (0.522 to 0.654), 0.485 (0.422 to 0.552) vs.
MES 0.500 (-0.250 to 1.000), 0.500 (0.000 to 1.00), 0.500 (—0.250 to 1.000)
for NAS, CAS, DAS, respectively. The ML model showed superior MCC
scores for DAS class identification under no GWN conditions.

With GWN at SNR-40 level, there was statistical significance between
all three sound groups: NAS, CAS, DAS (P =0.035, P=0.002, P = 0.000)
with ML scores of 0.341 (0.288 to 0.422), 0.256 (0.180 to 0.374), 0.557
(0.491 to 0.621) vs. MFS 0.500 (-0.250 to 1.000), 0.500 (0.000 to 1.000),
0.000 (—0.250 to 1.000 for NAS, CAS, DAS respectively. The MF students
showed superior performance in identifying NAS and CAS classes whilst ML
model outperformed human subjects under SNR-40 for DAS sound class
recognition.

Whist at GWN SNR-20 level, students showed statistically significantly
better results for all classes of sounds recognition, than Histgradient
spectrogram-based ML model (P = 0.000 for NAS and CAS classes and P =
0.009 for DAS class) with ML scores of 0.116 (-0.013 to 0.173), 0.001
(—0.095 to 0.255), 0.000 (—0.045 to 0.067) vs. 0.500 (-0.250 to 1.000), 0.500
(0.000 to 1.000), 0.500 (—0.250 to 1.000) for NAS, CAS, DAS respectively.
Therefore, at the highest levels, the MMC scores of the MFS group were
significantly higher than those of the ML Histgradient model, strongly
indicating human subjects’ robustness to the highest GWN levels compared
to the ML model.
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From Fig. 5.4.2 the impact on machine learning (ML) model and medical
faculty students (MFS) of different levels of Gaussian white noise (GWN)
can specificity be observed on three classes of lung sounds.

In the no GWN added condition, the specificity distributions of the
spectrogram Histogram-based Gradient Boosting Classification Tree machi-
ne learning (ML) model and the students scores were not significantly diffe-
rent for NAS and CAS (P > 0.05 for both classes), with ML model specifi-
cities 0 0.471 (0.415 to 0.543) and 0.587 (0.522 to 0.654) for NAS and CAS,
respectively, compared to medical faculty students’ (MFS) specificities of
0.500 (-0.250 to 1.000) and 0.500 (0.000 to 1.000) for the same classes.
However, for DAS, the ML model showed significantly higher specificity
than the students’ scores (P = 0.000), with ML specificity of 0.485 (0.422 to
0.552) compared to specificity of 0.500 (—0.250 to 1.000).

At GWN SNR-40, no significant differences were observed between the
two study groups for CAS class identification (P > 0.05). However,
significant differences were found between the NAS and DAS classes (P =
0.000, P = 0.024 ), with Histgradient ML model scores for DAS class identi-
fication being higher than those of MFS. However, the MFS group identified
better NAS class sounds. The ML model showed specificities of 0.341 (0.288
to 0.422), 0.256 (0.180 to 0.374), and 0.557 (0.491 to 0.621) for NAS, CAS,
and DAS, respectively, while the MFS had specificities of 0.500 (—0.250 to
1.000), 0.500 (0.000 to 1.000), and 0.000 (—0.250 to 1.000) for the same
classes.

In contrast, at GWN SNR-20, the MFS demonstrated statistically signifi-
cantly better specificity results than the spectrogram-based Histgradient ML
model for all sound classes (P = 0.000 for all classes). This ML model
specificities were 0.116 (—0.013 to 0.173), 0.001 (—0.095 to 0.255), and 0.000
(—0.045 to 0.067) for NAS, CAS, and DAS, respectively, compared to the
MEFS specificities of 0.500 (—0.250 to 1.000), 0.500 (0.000 to 1.000), and
0.500 (—0.250 to 1.000) for the same classes. Therefore, at the highest levels
of GWN, the MFS study group outperformed in specificity scores for NAS
and CAS classes. At the same time, the ML Histgradient model maintained
its statistically significant advantage for DAS class identification over
students, even at the highest levels of GWN.
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From Fig. 5.4.3 The impact of different levels of Gaussian white noise
(GWN) on machine learning (ML) models and medical faculty students’
(MFS) sensitivity scores.

At no GWN added condition, the sensitivity scores of the spectrogram-
based Histgradient ML model's and the medical faculty students’ (MFS)
scores do not significantly different for DAS class identification (P > 0.05).
However, that was statistically significant difference between study groups
in identifying NAS and CAS class of lung sounds (P = 0.030 and P = 0.000,
respectively). The ML sensitivities scores were as follows: 0.471 (0.415 to
0.543), 0.587 (0.522 to0 0.654), and 0.485 (0.422 to 0.552) for NAS, CAS, and
DAS, respectively, compared to MFS sensitivities of 0.500 (—0.250 to 1.000),
0.500 (0.000 to 1.000), and 0.500 (—0.250 to 1.000) for the same classes.
Therefore, data analysis shows that ML model hold statistically significant
advantage at no GWN levels for NAS and CAS classes and evenly matches
MEFS for DAS class.

At GWN SNR-40, no significant differences were observed for DAS
class sensitivity median scores (P > 0.05), but significant differences were
found for NAS and CAS classes (P = 0.000 for both groups), with the Hist-
gradient ML model having higher sensitivity than MFS for the NAS class and
lower for the CAS class of lung sounds. The ML model showed sensitivities
of 0.341 (0.288 to 0.422), 0.256 (0.180 to 0.374), and 0.557 (0.491 to 0.621)
for NAS, CAS, and DAS, respectively, while the MFS scores had sensitivities
of 0.500 (-0.250 to 1.000), 0.500 (0.000 to 1.000), and 0.000 (—0.250 to
1.000) for the same classes.

At GWN SNR-20, both study groups (ML Histgradient model and MFS)
were not statistically different in their sensitivity while identifying NAS and
CAS classes of lung sounds (P > 0.05 for both). However, the sensitivity of
spectrogram-based Histgradient ML model was statistically lower for DAS
class than that of MFS under the highest GWN level (P = 0.000). The ML
model sensitivities were 0.116 (—=0.013 to 0.173), 0.001 (-0.095 to 0.255),
and 0.000 (—0.045 to 0.067) for NAS, CAS, and DAS, respectively, compared
to the MFS sensitivities of 0.500 (-=0.250 to 1.000), 0.500 (0.000 to 1.000),
and 0.500 (—0.250 to 1.000) for the same classes.

Therefore, the ML model performs better in sensitivity at no GWN levels
and has some robustness at medium GWN levels. However, at the highest
levels of GWN (SNR-20), human subjects catch up with the ML model and
outperform it for DAS class lung sounds.
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6. DISCUSSION

The research was set up to explore and better understand the integration
of machine learning tools as an Al-based decision assistant for healthcare
workers under different ambient noise levels.

The research had two main parts: training machine models and medical
students, and comparing their sensitivity, specificity and MCC scores under
three levels of GWN for both groups. The project was set up to achieve these
goals with four objectives in mind. These objectives were used to create a
methodology where medical students and machine learning models were
trained and assessed to identify three lung sound classes under three levels of
GWN. Additionally, spectrogram and scalogram-based models were
compared for their performance under different GWN levels for three lung
sound classes identification. The evaluation of the models was performed
using the following assessment metrics: ROC-AUC and MCC and supported
by PR curve and confusion matrix, to evaluated GWN impact at SNR-40 and
SNR-20 levels on three classes of lungs sounds identification (NAS, CAS,
DAS), and finally to compare the ability of machine learning models and
medical students to identify three classes of lung sounds under three different
levels of GWN.

During the project, 124 patients were auscultated, and 108 patients were
selected for the research project. 52 medical students rolled into auscultation
training and assessment under GWN conditions, of which 45 completed the
study fully.

A proprietary website with a training and assessment section was created
for students.

First, ML models were trained using extracted features from scalograms
and spectrograms. The research training ran 30 times, with average data used
to create a confusion matrix, PR-AUC, ROC-AUC and calculate MCC.
Statistical significance between models was evaluated using Friedman’s test
with a post hoc analysis.

The models were evaluated based on the overall performance of the three
classes of lung sound detection under no GWN conditions (the best
conditions for the model). ROC-AUC was the primary criteria. Secondary
criteria were that the IQR range would be narrow, with the lower quartile as
high as possible and the highest possible median score. The evaluation of
spectrogram showed GB, XGBoost, MLP, Histgradient and LR models being
the top 5 models, with Histgradient being in top 3 in median score and having
the best IQR range.
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The middle performing spectrogram-based ML models were CatBoost,
LightGBM, followed by similarly performing SVM, Random Forest, Extra
Trees. Finaly the worst two models were AdaBoost and K-NN, from which
two K-NN had the worst performance out of the two.

The Friedman test results indicate statistically significant differences
among the evaluated algorithms. Post-hoc analysis was applied with an
adjusted P-value set at less than 0.05.

In summary, the statistical analysis confirms that GB, Histgradient and
XGBoost are the top performers in this evaluation, while K-NN and
AdaBoost results were underwhelming.

The study results concur with past research, showing very strong
performance by Hisgradient and XBBoost ML models and emphasize the
importance of selecting the right model. Previous research has shown that
XGBoost can outperform other models in respiratory sound detection. [127].
The other research shows that XGBoost and Histgradient outperforming
MLP, RF, AdaBoost [128]. Additionally, this research adds to the body of
scientific knowledge by comparing statistically spectrogram-based 12
models’ performance for lung class recognition.

Whilst the story was slightly different for scalogram-based ML models,
especially concerning the question of best performing ones. The training and
assessment of scalogram-based models showed that there was a significant
difference between the 12 ML models, and CatBoost model came out on top
as best performing ML model, significantly better than several other models,
for instance, better than LightGBM, SVM, Logistic Regression (P = 0.001).

Random Forest model was also a strong, but not always significantly
better. XGBoost took third place as a good, but slightly behind RF and
CatBoost. LightGBM was similar to XGBoost with no significant difference,
but slightly weaker performance. To worst performing models were SVM and
Logistic Regression and were significantly weaker than top ones. SVM and
Logistic Regression performed significantly worse than the tree-based
models (CatBoost, Random Forest and XGBoost).

Though there are no direct studies comparing CatBoost and other ML
models for lung sounds under ambient noise conditions, yet, interesting
glimpses can be acquired by looking at other types of studies, which used this
ML model.

For instance, Qin Yifan study shows that the best performing model was
CatBoost in predicting diabetes through lifestyle, followed by XGBoost,
Random Forest (RF), Logistic Regression (LR), and Support Vector
Machines (SVM) [129]. These findings align somewhat with our study on
ML scalogram-based model performance, though the type of predictive
model being built was very different.
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The study by Zaman R. Syed had more similar research topic, where
voice recordings used to predict biometric features. This research showed that
CatBoost ML model performs best among all in predicting human biometric
information from voice timbre with 96.4% test accuracy, compared to
Random Forest and XGBoost. On the other hand, Random Forest performs
best for predicting age, among all ML models used, with 70.4% test accuracy.
For emotion prediction, XGBoost performs best with 66.1% test accuracy
[130]. This research emphasis, again, on how models’ accuracy varies
depending on type of data being classified.

Hence, we can see that each ML model has its advantages and
disadvantages, furthermore, only by running experiments empirically and
comparing them, we can deduce an optimal model for pulmonary lung sound
recognition.

The 12 spectrogram-based ML models were compared to their 12
scalogram-based counterparts. The results showed a significant difference
between the two groups, with spectrogram-based models outperforming their
equivalent counterparts.

This indeed was a bit of surprise as scalograms, technically, should
preserve more information then spectrograms and, in theory, perform better
even in noisy conditions [131].

The phenomena could be explained by two main points. First, the dataset
might not have been large enough. The article by Pratham N. Soni stated that
limited datasets could lead to overfitting in small datasets due to their high
dimensional feature space [132].

The other issue with scalograms is that they require more finetuning to
get the most out of them. This topic has been explored by Addison S. Paul in
2002 book [133]. Therefore, the limited conclusion can only be drawn that
due to relative spectrogram simplicity, models adaptability and limited
datasets spectrogram-based models were significancy better in recognising
lungs sounds.

The second stage of the study was to assess the human subjects’ ability
to recognise different class of lung sound at GWN environment, trained on
the same data.

Medical students were chosen for the study, as auscultation training
typically begins with them, whilst them being motivated to learn lung
auscultation skills, as part of development, towards becoming physicians.
Younger subjects were also less likely to experience hearing impairments
[134]. Furthermore, confounding variables such as age, subjects’
environment and training hours could be more easily controlled.

The study enrolled 52 LMSU second- and third-year students and after
training for 4 days students took an exam under three levels of GWN.
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The results showed that GWN had a statistically significant impact on
the ability of subjects to recognise specific classes of lung sounds. This ability
to identify NAS and DAS significantly varied (P = 0.042, 0.021, respectively)
at all three levels of GWN, whilst no significant impact of GWN levels on
CAS sound recognition was observed (P =0.311).

Post hoc analysis of the NAS and DAS classes revealed a statistically
significant difference in students’ scores for the NAS class between no GWN
and SNR-40 (P=0.016). For the DAS class, significant differences were
found between no GWN and SNR-40 (P=0.013) and between SNR-40 and
SNR-20 (P=0.023).

The hypothesis that ambient noise uniformly impacts all lung sound
classes’ identification was rejected. The findings indicated that background
noise especially affected DAS class, which was the most difficult to identify
at SNR-40 level of noise pollution.

Existing research shows that crackles are more difficult to identify
correctly than wheezes, which belong to the DAS and CAS classes of lung
sounds respectively [135]. Particularly, research by Ye Peitao examined the
ability of 56 subjects to distinguish fake crackles from real ones and conclu-
ded that the former has a statistically significant impact on misdiagnosis
[136]. This research indicates another contributing factor, noise, as demon-
strated by different levels of GWN. This factor is concerning because DAS
lung sounds are associated with heart failure and pneumonia; therefore, a lack
of early diagnosis could adversely impact the care of these patients and
negatively affect preliminary treatment plan.

Assessing acoustic properties is a key in understanding why DAS is
affected more than CAS. Amongst the two classes, adventitious lung sounds
and wheezes are continuous, high-pitched sounds with a frequency of 400 Hz,
lasting more than 80 ms. In contrast, crackles are discontinuous, exhibiting a
wider frequency range of 100—2000 Hz but with a notably shorter duration of
less than 20 ms [137].

Fine crackles are hard to hear due to their short duration. In a previous
study by Moriki Dafni, which included 296 physicians with different
specialities and levels of expertise, only 55.2% correctly identified fine
crackles, compared to 72.2% who correctly recognised wheezes [138]. They
can also be more easily confused with the rubbing of the stethoscope
membrane sound [136]. The study used only five audio-recorded respiratory
sounds that physicians had to listen to and document their responses.

Whilst CAS appears not to be impacted by GWN, this finding may not
hold true if different types of background noise, such as babbling or car
sounds, are used.
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Another major reason why CAS is least affected by GWN is that wheezes
have the most distinct audio qualities amongst the three classes. Whilst NAS
could potentially be confused with DAS, especially when GWN is intro-
duced, students misidentify these lung sounds even at no GWN and SNR-20
levels.

Regarding the DAS class of sounds, a fascinating observation is obtai-
ned: identifying lung sounds at SNR-40 is more difficult compared to SNR-20.
Previous research has already identified crackles as problematic to identify
and easy to confuse, particularly due to fake crackles, a wide frequency range
and their short duration [136, 137]. This research indicates that not only is the
DAS class harder to identify, but it is also the most affected by noise
pollution. Interestingly, this class is impacted most at the medium noise level
(SNR-40) rather than at higher intensity (SNR-20).

Finally, the final stage of the study looked at comparing MCC, sensitivity
and specificity values. MCC value was chosen in additional to standard
evaluation coefficients as there was an imbalanced dataset in machine
learning with lower DAS class and therefore a more balanced matric was
needed than a standard accuracy.

Though, as previously mentioned students’ ability to recognise sounds
was impacted now it was time to compare it to machine learning models.

The comparison of the Histgradient model and MF students’ MCC
performance under different levels of GWN revealed interesting trends.
Under the no GWN condition, MF students performed similarly to the
Histgradient model, as no statistically significant differences were observed
across NAS, CAS, and DAS classes (P > 0.05 for all). The ML scores for
Histgradient were 0.471 (IQR: 0.415-0.543), 0.587 (IQR: 0.522-0.654), and
0.485 (IQR: 0.422-0.552) for NAS, CAS, and DAS, respectively, whereas
MF students consistently scored 0.500 (IQR: —0.250-1.000), 0.500 (IQR:
0.000-1.000), and 0.500 (IQR: —0.250-1.000) across all classes, indicating
comparable performance in noise-free conditions.

Whilst GWN at SNR-40 level, the results showed a mixed pattern. While
there was no overall statistical significance between the two subject groups,
significant differences were observed for each sound class (P = 0.035 for
NAS, P = 0.002 for CAS, and P = 0.000 for DAS). The ML model’s
performance declined for NAS and CAS, with MCC scores of 0.341 (IQR:
0.288-0.422) and 0.256 (IQR: 0.180-0.374), respectively. However, for
DAS, the Histgradient model achieved a notably higher MCC score of 0.557
(IQR: 0.491-0.621), outperforming MF students, who scored just 0.000
(IQR: —0.250-1.000). This suggests that while the ML model struggled with
NAS and CAS under moderate noise, it demonstrated superior performance
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in identifying DAS, a class of lung sounds that proved particularly difficult
for human listeners.

Finally, at the highest GWN level (SNR-20), MF students significantly
outperformed the Histgradient model across all sound classes (P = 0.000).
The ML model’s performance deteriorated sharply, with MCC scores of 0.116
(IQR: —0.013-0.173), 0.001 (IQR: —0.095-0.255), and 0.000 (IQR: —0.045—
0.067) for NAS, CAS, and DAS, respectively, whereas MF students maintai-
ned a consistent score of 0.500 across all classes’ recognition.

Concerning sensitivity, varied GWN conditions reveals important diffe-
rences in performance between the spectrogram-based Histgradient ML
model and MF students. In the no GWN added condition, while both groups
showed comparable sensitivity for DAS classification (ML: 0.485, IQR:
0.422-0.552 vs MFS: 0.500, IQR —0.250-1.000; P > 0.05), the ML model
demonstrated significantly better performance for NAS (0.471, IQR: 0.415-
0.543 vs 0.500, IQR: 0.250-1.000; P = 0.030) and CAS (0.587, IQR: 0.522—
0.654 vs 0.500, IQR: 0.000—1.000; P = 0.000).

At medium levels of GWN (SNR-40), the ML model maintained higher
sensitivity than MFS for NAS (0.341, IQR: 0.288-0.422 vs 0.500, IQR:
0.250-1.000; P = 0.000) but showed lower sensitivity for CAS (0.256, IQR:
0.180-0.374 vs 0.500, IQR: 0.000-1.000; P = 0.000), with no significant
difference in DAS classification (P > 0.05). Notably, the ML model’s DAS
sensitivity (0.557, IQR: 0.491-0.621) contrasted sharply with MFS perfor-
mance (0.000, IQR: 0.250-1.000).

Under the highest tested GWN conditions (SNR-20), the ML model’s
sensitivity dropped substantially across all classes: NAS (0.116, IQR: 0.013—
0.173), CAS (0.001, IQR: 0.095-0.255), and DAS (0.000, IQR: 0.045-
0.067). While no significant differences existed between two study groups
for NAS and CAS class identification (P > 0.05), as students were also
impacted by ambient noise. There was a significant performance difference
between the study groups in DAS lung class identification sensitivity scores,
with MFS outperforming ML model (0.500, IQR: 0.250-1.000 vs ML; P =
0.000).

These results demonstrate that while the ML model shows superior
sensitivity in noise-free conditions, particularly for NAS and CAS classifi-
cations, its performance degrades with increasing noise levels. Therefore,
ambient noise levels significantly affect ML model performance, with
degradation as noise increases. This analysis highlights the ML model’s good
sensitivity scores in low-noise with some robustness to moderate (SNR-40)
GWN conditions but vulnerability to higher GWN levels. At the same time,
MFS show more consistent (though variable across lung sound classes)
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performance across noise levels although with a trade-off that students have
higher variability, as shown by interquartile range as compared to ML model.

Specificity comparison findings reveal distinct performance patterns
between the Histgradient ML model and MF students under varying GWN
conditions.

Under no GWN conditions, the ML model demonstrated comparable
specificity to MFS for NAS (ML: 0.471, IQR: 0.415-0.543 vs MFS: 0.500,
IQR: —0.250-1.000; P > 0.05) and CAS (ML: 0.587, IQR 0.522—-0.654 vs
MEFS: 0.500, IQR: 0.000—1.000; P> 0.05), while showing significantly better
performance for DAS (ML: 0.485, IQR: 0.422—0.552 vs MFS: 0.500, IQR: —
0.250-1.000; P = 0.000). Additionally, the ML model holds an advantage
over human subjects by exhibiting lower interquartile values (IQR), indi-
cating lower variability than human subjects, but this is only true under low
ambient noise conditions.

When moderate noise was introduced (SNR-40), the ML model main-
tained its advantage in DAS classification (ML: 0.557, IQR: 0.491-0.621 vs
MEFS: 0.000, IQR: —0.250-1.000; P = 0.024) but was outperformed by MFS
in NAS (ML: 0.341, IQR: 0.288-0.422 vs MFS: 0.500, IQR: —0.250-1.000;
P =0.000), with comparable performance in CAS (P > 0.05).

Under high noise conditions (SNR-20), MFS showed consistently
superior specificity across all classes: NAS (0.500, IQR: —0.250-1.000 vs
ML: 0.116, IQR: —0.013-0.173; P = 0.000), CAS (0.500, IQR: 0.000—-1.000
vs ML: 0.001, IQR: —0.095-0.255; P = 0.000), and DAS (0.500, IQR: —
0.250-1.000 vs ML: 0.000, IQR: —0.045-0.067; P = 0.000).

These specificity results demonstrate that while the ML model performs
well in no GWN added and medium levels of GWN (SNR-40), particularly
for DAS classification, MFS exhibit greater robustness in noisy environ-
ments, maintaining stable performance where the ML model’s accuracy
deteriorates significantly.

The substantial performance gap at GWN SNR-20 for specificity, MCC
scores, and sensitivity suggests that ML models require additional noise
resilience improvements to match healthcare workers performance in real-
world clinical settings where acoustic interference is common such as emer-
gency room settings.

These findings indicate that ML models could serve as valuable clinical
assistants, particularly for detecting discontinuous auscultated sounds in quiet
and medium-noisy environments where human perception is significantly
impaired. This could lead to better sensitivity for diagnosing DAS types of
adventitious lung sounds, such as crackles, which are associated with leading
morbidities such as HF and pneumonia.
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Moreover, study results highlight both the potential strengths and
limitations of current ML models in lung sound classification under ambient
noise conditions. Human listeners generally outperform ML models in highly
noisy environments, suggesting a need for further research that explores
improving robustness for lung sound classification models.

The model’s diagnostic sensitivity to detect DAS sounds was not just due
to model or spectrogram visualisation features, but also due to rudimentary
fine tuning where sensitivity threshold for DAS was set at 1.30, for CAS at
1.1 and for NAS at 1.0. This was done due to the fact that DAS class of dataset
was smaller as compared to other two classes and additionally it is known
that discontinuous lung sounds are more difficult to detect. Therefore,
showing potential and importance of fine-tuning ML models.

Future work should focus on enhancing ML models’ robustness through
noise-adaptive training strategies, such as data augmentation and advanced
denoising methods, to further improve performance across all lung sound
classes.

The literature overviews on machine learning model’s robustness have
shown limited data available of lung ambient noise impact on auscultation,
but our research empathises paramount importance in such research kind.

This clearly shows the need not only training and assessing performance
of ML models under different levels of GWN and other types of ambient
noise, but also comparing trained models to human subjects’ abilities. Only
then ML models can fully be integrated as diagnostic tool to assist healthcare
workers.

Advantages and disadvantages of the study

There are several advantages to this study design. First, this is the first
research to compare human subjects' ability to learn and identify three classes
of lung sounds under three levels of GWN. Secondly, the research project has
achieved statistically significant results in showing the impact of GWN on
ML models. The research used a substantial number of ML model variations;
24 in total (12 spectrogram-based and 12 scalogram-based), which allowed
for comparing a large number of ML models under the same conditions as a
tool for classification of lung sounds. The study compared human subjects
and ML models across different sound classes and ambient noise levels. This
allowed for the revelation of advantages and disadvantages of organic
intelligence versus Al i.e., top ML model (Histgradient) performing better
under low noise conditions for DAS class, whilst human subjects performed
better under noisiest test conditions.
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The drawback of the work is that even though 250 recordings were used
for training and assessing ML models, this might still not be sufficient to fully
exploit the models' potential. Though threshold and fine tuning were
attempted with some success for boosting ML models, the scalogram results
were very disappointing in their diagnostic accuracy. This might be due to
the real noise environment conditions in which the recordings were collected.

The student number was also relatively small at 52 subjects, of which 45
completed the study fully. Nonetheless, meaningful and statistically signi-
ficant results were achieved. Additionally, this was not a multi-clinical study
and physicians and nurses were not involved. To expand and make the results
even more applicable, it would be important to include all types of healthcare
workers to better understand how assisted ML diagnostics could support the
specialist in diagnosing lung pathologies under different types of ambient
noise.
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CONCLUSION

Machine learning models and medical students can be trained to identify
three classes of lung sounds but with various levels of accuracy.

Spectrograms based models showed significant better accuracy as com-
pared to scalograms across 12 machine learning models.

Increased Gaussian white noise levels affected the ability of both medical
students and machine learning models to recognise lung sounds. Machi-
ne learning models were more often affected by the highest level of
sound contamination (SNR-20), where the ability to recognise normal
lung sounds, discontinuous, and continuous lung sound classes signifi-
cantly decreased. Meanwhile, out of three lung sound classes, the medi-
cal students’ accuracy in recognising discontinuous was most signifi-
cantly affected by the medium level of Gaussian white noise (SNR-40).

The machine learning Histgradient model at the SNR-40 GWN level
outperformed medical students in recognising discontinuous lung sounds
with higher Matthews correlation coefficient and sensitivity while
maintaining reasonable specificity. Therefore, this ML shows potential
for use as a diagnostic assistant in low ambient noise conditions.
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PRACTICAL RECOMMENDATIONS

All physicians, nurses, residents and medical students should know their
diagnostic accuracy for a given lung sound class and noise level in their
work environment. This assessment could be performed via web-based
examination format.

All future machine learning models should be evaluated for environmen-
tal noise conditions. The models performance should be freely available
for access and scrutiny.

The Histgradient Boost machine learning model should be further explo-
red and developed to help identify lung sounds belonging to the discon-
tinues lung sounds class under sound pollution conditions.

All models used as an aid to the diagnosis of lung sounds in the clinical
work of healthcare professionals should be evaluated at different ambient
noise levels.

The machine learning model diagnostic assistant integration with health-
care worker performing auscultation should always take into account the
specialist performance for that particular sound under certain ambient
noise conditions, this should be weight against machine learning models
performance under the same conditions and once diagnosis assistance is
provided by the model it could do so in a context of this information.
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SANTRAUKA

1. SUTRUMPINIMAI

adaptacinis stiprinimas (masininio mokymosi modelis)
(angl. Adaptive Boosting)

dirbtinis neuroninis tinklas

(angl. artificial neural network)

asmens informavimo forma

dézutés ir Gisy pobudzio diagrama (ang. boxplot diagram)
baltasis triukSmas

kategorijy gradientinis stiprinimo modelis (masSininio mokymosi
modelis) (angl. Categorical data Gradient Boosting)
drégni auskultaciniai karkalai

decibelai

dirbtinis intelektas

»Papildomy medziy* masininio mokymosi modelis

(angl. Extra Trees)

elektroninis stetoskopas

Gradientinio stiprinimo masininio mokymosi modelis
(angl. Gradient Boosting)

Gausso baltas triukSmas

Histogramomis pagrjsto gradientinio stiprinimo klasifikacinio
medzio masininio mokymosi modelis

(angl. Histogram-based Gradient Boosting Classification Tree)
hercai

inksty funkcijos nepakankamumas

informuoto sutikimo dokumentas

K-artimiausi kaimynai (masininio mokymosi modelis)
(angl. K-Nearest Neighbors)

Konvoliucinis neuroninis tinklas

lengvas gradientinis stiprinimo masinio mokymosi modelis
(angl. Light Gradient Boosting Machine)

létiné inksty liga

Létiné obstrukciné plauciy liga

logistinés regresijos masininio mokymosi modelis

(angl. Logistic Regression)

Medicinos fakultetas

Medicinos fakulteto studentas

Motiejaus koreliacijos koeficientas

daugiasluoksnis perceptronas (masininio mokymosi modelis)
(angl. Multilayer Perceptron)

masininis mokymasis

milisekundés

normallis auskultaciniai garsai

organinis intelektas

Pasaulio sveikatos organizacija

159



RF —  atsitiktiniy medziy tipo masininio mokymosi modelis
(angl. Random Forest)

ROC —  sprendimus priimanciojo ypatybiy kreivé
(angl. Receiver Operating Characteristic)
ROC-AUC —  plotas po sprendimus priimanciojo ypatybiy kreive

(angl. Receiver Operating Characteristic Area Under the Curve)
s —  sekundés

SAK —  sausi auskultaciniai karkalai
SITS —  signaly ir triukSmo santykis
SN —  standartinis nuokrypis
SPS —  Skubios pagalbos skyrius
SVM —  palaikymo vektoriy masininio mokymosi modelis
(angl. Support Vector Machines)
SN —  Sirdies nepakankamumas
XGBoost —  Ekstremalus gradientinis stiprinimo klasifikatorius (masininio

mokymosi modelis) (angl. Extreme Gradient Boosting classifier)

2. JVADAS

Stetoskopas sveikatos priezitiros specialisty klinikiniame darbe kasdien
naudojamas daugiau nei 200 mety, taciau Sio prietaiso naudojimas vis dar
apribotas tyré¢jo subjektyviu geb¢jimu efektyviai atlikti auskultacijg ir ja
vertini bei aplinkos triuk§mo lygiu [1-3].

Pastebéta, jog pastarajj deSimtmet; krito kardiopulmoninés auskultacijos
atlikimo daZznis ir iy auskultacijy interpretavimo lygis [4, 5]. Plauciy auskul-
tacija iSlieka vis dar svarbiausias i§ keturiy plauciy sistemos klinikinio iSty-
rimo metody. Plauciy ligos — trecia pagal daznuma mirties priezastis visame
pasaulyje [6, 7], tod¢l geri plauciy auskultaciniai jgtidziai, kaip pradinis, grei-
tas ir efektyvus, neinvazinis iStyrimo metodas klinikiniame sveikatos prieziii-
ros specialisty darbe aktualus ir biitinas.

Mokslas ir inZinerija nestovi vietoje, deSimtmecius kuriami bei tobuli-
nami elektroniniai stetoskopai (el. stetoskopai), biitent tai leido plétoti kom-
piutering auskultacija [8, 9].

Naujausi pokyciai mikroschemy industrijoje, skai¢iavimo galios spartos
progresas, paremtas Moore‘o désniu, kartu su patobulintais matematiniais
modeliais 1émé vis didesnius proverzius ir maSininio mokymosi (MM)
priemoniy taikyma diagnostikos srityje [11-13].

Sinerginis elektroniniy stetoskopy ir dirbtinio intelekto (DI), o konkre-
¢iau MM modeliy, derinys iSryskéjo kaip galimas sprendimas, siekiant pa-
gerinti plauciy auskultacijos diagnostinj tiksluma [6].

Taciau yra labai nedaug straipsniy, kuriuose biity lyginamas zmoniy
auskultacijy interpretavimo tikslumas su dideliu skai¢iumi MM modeliy
gebéjimu interpretuoti auskultacinius duomenis.
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ISlieka esminis klausimas, kaip ir koks MM modelis galéty tapti pagal-
bine priemone gydytojui, esant apsunkintoms klinikinés auskultacijos saly-
goms, t. y. esant jvairiems aplinkos triuk§mo lygiams. Neatsakius i §j klausi-
ma, Siy priemoniy integracija | kasdienj klinikinj darbg problematiSka, o
netinkamy ar nepritaikyty interpretuoti esant garso uzterStumui MM modeliy
naudojimas gali sukelti daugiau problemy nei sprendimy, kuriuos jie turéty
iSspresti.

Plauciy garsai skiriasi ir yra klasifikuojami du pagrindiniai auskultacijos
garsy tipai: normalts (NAGQG) ir patologiniai. Patologiniai auskultaciniai gar-
sai gali buti sausi auskultaciniai karkalai (SAK) ir drégni auskultaciniai
karkalai (DAK). Drégny karkaly savybés iSreiSkiamos kaip smulkis ir grubtis
traSk¢jimai, o sausy karkaly garsai gydytojui girdimi kaip Svilpimai ir
bronchy garsai. Tipiniai sausi patologiniai garsai paprastai yra nuo 80 iki
1600 Hz, trunka ilgiau nei 250 ms ir yra susij¢ su astma, 1étine obstrukcine
plauciy liga. Drégni patologiniai plauciy garsai yra trumpesni, paprastai
trunka maziau nei 20 ms, turi placig dazniy ribg nuo 100 iki 2000 Hz ir yra
susije su irdies nepakankamumu (SN), pneumonija [14].

Si disertacija gilinasi j tai, kaip anotuoti ir kontroliuojami MM modeliai
geba atpazinti tris skirtingas plauciy garsy klases esant trims skirtingiems
aplinkos triuk§mo lygiams ir lygina Siy modeliy klaidy matricos parametrus
su zmoniy gebé¢jimais, naudojant tg patj auskultaciniy duomeny rinkinj.

Sio darbo sukauptos Zinios turéty prisidéti prie Ziniy pazangos, siekiant
ateityje integruoti ir plétoti ekonomiskai efektyvius, neinvazinius, kokybis-
kus ir objektyvius pirminio iStyrimo sprendimus, kurie galéty biti taikomi
ambulatorinéje kvépavimo sistemos iStyrimo ir stebéjimo srityje [15—17].

3. TIKSLAS IR UZDAVINIAI

3.1. Tikslas

Ivertinti ir palyginti maSininio mokymosi modeliy ir medicinos studenty
diagnostinj tiksluma, teisingai identifikuojant tris auskultaciniy plauciy garsy
klases, esant trims skirtingiems Gausso baltojo triuk§mo (GBT) lygiams.
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3.2. Uzdaviniai

1. ISmokyti maSininio mokymosi modelius bei medicinos studentus
identifikuoti tris auskultaciniy plauciy garsy klases ir jvertinti jy
gebéjima identifikuoti jas skirtinguose GBT lygiuose.

2. vertinti spektrogramos ir skalogramos jtaka 12 skirtingy anotuoty
masininio mokymosi modeliy geb¢jimui tiksliai identifikuoti skir-
tingas plauciy garsy klases.

3. Palyginti masininio mokymosi modeliy ir medicinos studenty gebé-
jimg identifikuoti tris plauc¢iy garsy klases, esant trims skirtingiems
GBT lygiams, naudojant pagrinding diagnosting metrika.

4. Nustatyti maSininio mokymosi modelio galimybes veikti kaip diag-
nostiniam pagalbininkui GBT salygomis, identifikuojant tris pagrin-
dines plauciy garsy klases.

3.3. Darbo naujumas

Tyrimo projektas yra unikalus pasaulyje. Pirmas tokio pobudZzio, paly-
ginantis Zzmogiskyjy tyrimo subjekty ir masininio mokymosi modeliy gebe-
jimus identifikuoti tris plauciy garsy klases trijose GBT lygio salygose.

Siuo metu néra atlikty tyrimy, kurie lyginty 12 MM modeliy rezultatus
su zmoniy gebéjimais, naudojant tuos pacius plauciy garsy duomeny
rinkinius. Tyrimy, nagrin¢jan¢iy Zmogaus geb¢jimg atpazinti plauciy garsus
skirtingomis triuk§mo lygio salygomis yra nedaug.

Moksliniai straipsniai, kurie tyrinéty aplinkos triukSmo poveikj MM
modeliy tikslumui yra taipogi reti, o kai kurie daugiau nei deSimties mety
senumo, tuo tarpu per §j laika MM modeliai tobuléjo, atsirado naujy irankiy,
kurie dar nebuvo iSbandyti minétose salygose. Tod¢l, pasitelkiant kelis skir-
tingus MM modelius ir dvi garso atvaizdavimo formas, galima pateikti naujy
1zvalgy apie tai, kurie modeliai galéty buti atspariausi triukSmo poveikiui ir
kaip jie galéty biiti naudojami sprendimy priémimui. Tyrimai apie Zmoniy
gebéjima atpazinti skirtingy klasiy plauciy garsus taip pat yra menki, senesni
nei 5 mety, atlikti jvairiose aplinkose, jy pernelyg neklasifikuojant arba
auskultaciniai duomenys rinkti vaiky populiacijoje [30, 31].

Tyrimy straipsniai netgi pateikia prieStaringas iSvadas, pavyzdziui, kad
daugumos tyréjy gebé¢jimas girdéti Sirdies ir plauciy garsus néra reikSmingai
paveiktas ekstremalaus aplinkos triuk§mo garsumo, kuris pasitaiko skubios
pagalbos skyriuose [31].

2019 m. Rory Wallis apzvalgos straipsnis padar¢ iSvada, kad aplinkos
triukSmo lygio matavimai ligoninése yra netiksliis ir nestandartizuoti [32].
Auksciau mineti faktoriai apsunkina hipoteziy tikrinima, bandant pakartoti
metodika. GBT savybés svarbios standartizuojant triukSmo lygj, kadangi jis
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tolygiai apima visas dazniy juostas. Todél GBT panaudojimas, kaip standar-
tizuoto aplinkos triuk§mo, vertinant zmoniy ir MM mokymosi auskultaciniy
garsy atpazinimo rezultatus yra naujo pobiidZio tyrimas.

Tuo tarpu tyrimy, kurie nagrinéja MM modelius skirtingomis aplinkos
triukSmo salygomis, taip pat yra labai mazai ir literatiiros apzvalgoje galima
rasti tik tris straipsnius [10, 30, 33]. Be to, kai kurie tyrimai neturi statistiskai
reikSmingo duomeny kiekio, kad biity galima atlikti statisting analize [10].

Siuolaikiniy MM modeliy pritaikymas auskultacijy interpretavimui,
esant standartizuotam GBT, trijuose skirtinguose triukSmo lygiuose bei miné-
ty MM modeliy rezultaty palyginimas su zmogiskyjy tyrimo subjekty gebeji-
mu interpretuoti tg patj auskultaciniy duomeny rinkinj, tomis paciomis stan-
dartizuotomis garso uzterStumo salygomis pavercia §j tyrimg visiskai unikaliu.

4. METODIKA

4.1. Tyrimo dizainas, tyrimo vieta

Prospektyvusis tyrimas buvo atliktas Lietuvoje 2020-2024 m.

Tyrimo dalyviai:

Auskultaciniy duomeny rinkimo etape tyrimo dalyviai: pacientai, hospi-
talizuoti dél diagnozuotos pneumonijos, Sirdies nepakankamumo (SN), léti-
nés obstrukcinés plauciy ligos (LOPL), astmos, inksty nepakankamumo,
létinés inksty ligos (LIL) arba hidrotorakso, remiantis Lietuvos sveikatos
moksly universiteto Kauno ligoninés protokolais [95—-104], kuriems pirminio
klinikinio tyrimo duomenimis buvo nustatyti patologiniai ir nepatologiniai
plauciy garsai.

Zmogiskyjy tyrimo subjekty auskultacijy interpretacijos apmokymo
etape tyrimo dalyviai: savanoriai II ir III kurso LSMU medicinos studijy
studentai, iki tyrimo netur¢je auskultaciniy igiidziy.

Tyrimo vieta plauciy garsy (auskultaciniy duomeny) rinkimo etape:
tyrimas buvo atliktas Lietuvos sveikatos moksly universiteto Kauno ligoninés
Kardiologijos ir Vidaus ligy diagnostikos skyriuose (Josvainiy g. 2 ir Hipod-
romo g. 13, Kaunas).

Tyrimo vieta medicinos studenty auskultacijy mokymo etape: Lietuvos
sveikatos moksly universiteto, Vidaus ligy katedra (Josvainiy g. 2, Kaunas).

Tyrimas dalinai atliktas bendradarbiaujant su Kauno technologijos
universiteto profesoriumi Evaldu Vaiciukynu ir jo kolegomis, remiant Kauno
technologijos universiteto (dotacijos Nr. PP2023/39/4) ir Lietuvos sveikatos
moksly universiteto Svietimo ir mokslo fondams.
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4.2. Imties dydzio apskai¢iavimas

Patologiniy ir nepatologiniy plauciy garsy turin¢iy pacienty (auskulta-
ciniy duomeny rinkimo etape) ir auskultacijy apmokymo etapo studenty
imties dydziai buvo apskai¢iuoti naudojant G*Power programing jranga
(versija 3.1.9.4; Heinrich-Heine-Universitit Diisseldorf, Diisseldorfas, Vo-
kietija) [106, 107].

Medicinos studenty imties dydzio skai¢iavimai buvo grindziami pries tai
atliktu pilotiniu tyrimu. Programiné jranga naudojo Siuos nustatymus vidur-
kiams apskai€iuoti: Wilcoxon suporuoty rangy testas (sulygintos poros) funk-
cija. Buvo taikomos $ios prielaidos: galia (1 — 8 klaidos tikimybe¢) — 0,95 ir
a klaidos tikimybé — 0,05. Efekto dydis (Cohen dz) i$ pilotinio tyrimo buvo
0,61, pagal reikSmes prie$ ir po mokymo bei standartinius nuokrypius (SD),
kurie buvo atitinkamai 4,80 + 0,49 ir 5,07 + 0,36. Sios reikimés buvo jvestos
1 funkcija, o rezultatas parodé, kad reikalinga 33 dalyviy imtis. Pilotiniame
tyrime buvo pridéta papildomai 30 proc. daugiau turimyjy dél atkritimo
galimybés. Todel, atsizvelgiant | numanomg tiriamyjy atkritimo tikimybe,
Siam tyrimui reikalingas bendras dalyviy skaicius apskai¢iuotas buvo 48.

Plau¢iy garsy pacienty imties dydis buvo apskaifiuotas remiantis
prielaida, kad efekto dydis bus 0,50, galia (1 —f klaidos tikimybe¢) — 0,95 ir
a klaidos tikimybé — 0,05, o grupiy skai¢ius buvo nustatytas 3. G*Power
programinés jrangos (versija 3.1.9.4; Heinrich-Heine-Universitit Diisseldorf,
Diisseldorfas, Vokietija) funkcija buvo nustatyta kaip ANOVA: fiksuotas
efektas. [vestis davé rezultatg — 85 dalyviai (iskaitant kontroline grupe). Plau-
Ciy garsy jrasai tur¢jo biiti perzitiréti taikant ,,double-blind* metoda, darant
prielaida, kad apie 30 proc. atrinktyjy nebus tinkami, o tai reiSkia, kad j tyrima
tur¢jo biti jtraukta apie 122 dalyviai.

4.3. Jtraukimo ir nejtraukimo kriterijai

Itraukimo kriterijai — pacientams, plauc¢iy garsy jraSymui:

1. Pacientas, kuriam diagnozuota pneumonija;

Pacientas, kuriam diagnozuota astma;

Pacientas, kuriam diagnozuotas §irdies nepakankamumas (SN);
Pacientas, kuriam diagnozuotas inksty nepakankamumas (IFN);
Pacientas, kuriam diagnozuota létin¢ obstrukciné plauciy liga (LOPL)
patiméjimas;

Pacientas, turintis papildomy plauciy garsy;

Pacientas, turintis normalius plauc¢iy auskultacinius garsus;
Pacientas, vyresnis nei 18 mety;

Pacientas, neturintis psichikos sutrikimy;

Nk v
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10. Pacientas buvo sagmoningas ir galéjo teisingai atsakyti j klausimus;
11. Pacientas, sutinkantis savanoriskai dalyvauti ir pasirases informuoto
sutikimo forma.

Itraukimo kriterijai — medicinos studentams, auskultacijy apmokymams:

1. LSMU medicinos studentas, esantis antrame ar tre¢iame kurse;

2. Dalyvis, vyresnis nei 18 mety;

3. Dalyvis, neturintis ankstesnés auskultacijos patirties;

4. Sutinkantis savanoriskai dalyvauti ir pasiras¢s informuoto sutikimo
forma.

Nejtraukimo kriterijai — pacientams, plauciy garsy jraSymui:

1. Pacientai, atsisake dalyvauti tyrime;

2. Pacientai, kurie negaléjo kalbéti lietuviskai ir suteikti sutikimo;

3. Pacientai, kurie negal¢jo stovéti ar sédéti ramiai, kad bty atlikta

auskultacija.

Nejtraukimo kriterijai — medicinos studentams, auskultacijy apmoky-
mams:

1. Studentai, turintys klausos sutrikimy;

2. Studentai, vyresni nei 40 mety;

3. Studentai, kurie atsisaké dalyvauti arba nepasirasé sutikimo formy.

4.4. Tyrimo metodika

Siekiant palygti medicinos studenty ir maSininio mokymosi (MM)
modeliy rezultatus, metodika buvo suskirstyta j keleta mazesniy uzduociy.

Pirma uzduotis buvo jrasyti plau¢iy garsus ir juos apdoroti mokymo ir
mokymosi tikslais.

Pacienty auskultaciniai jrasai buvo atlikti per mazdaug tris ménesius
(nejskaitant pertrauky). Elektrinio stetoskopo nustatymai: rezimas nustatytas
1 diafragma, o garso stiprinimas — j 3 lygj (maksimalus lygis — 9). Tyr¢jas
jrasus atlikdavo palatose, kuriose paprastai biidavo nuo 2 iki 4 pacienty. Buvo
naudojamas 3M™ Littmann® CORE skaitmeninis stetoskopas (3M Compa-
ny, St Paul, Minesota, JAV), HP ProBook 450 G4 neSiojamas kompiuteris
(HP Inc., Palo Alto, Kalifornija, JAV) su ,Microsoft® Windows® 10%
operacine sistema (Microsoft Corporation, Redmondas, VaSingtonas, JAV) ir
Intel® Core™ i5 i5-7200U procesoriumi (Intel Corporation, Santa Clara,
Kalifornija, JAV), skirtas garso failams saugoti naudojant 3M™ Littmann®
StethAssist — 1.3.230 programing jranga (3M Company, St Paul, Minesota,
JAV).
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Norint jvertinti medicinos studenty ir MM modeliy atsparuma skirtin-
giems signalo ir triuk§Smo santykio (SITS) lygiams, kiekvienam jrasui buvo
pridétas Gauso baltasis triukSmas (GBT) pagal Samit Ari metodika (108).
Trijy lygiy GBT: be GBT, GBT su SITS-40 ir GBT su SITS-20. GBT buvo
pridétas naudojant ,,Anaconda®“ (Austinas, Teksasas, JAV) su ,Jupyter
Notebook 6.4.7° ir Python paketais maSininio mokymosi treniravimui ir
vertinimui. Garso ypatybés buvo iSgautos naudojant Python bibliotekg ir
iSsaugotos CSV formatu.

Antra uzduotis buvo apmokyti MM modelius plauciy garsy interpre-
tacijos.

IS viso buvo pasirinkta 12 anotuoty masininio mokymosi modeliy:
AdaBoost, CatBoost, Extra Trees (ET), gradient boosting (GB), Histgradient,
K-NN, LightGBM, logistiné regresija, MLP, Random Forest, SVM,
XGBoost. Sie modeliai buvo pasirinkti dél jy potencialo ankstesniuose plau-
¢iy garsy ar kity klausos biosignaly diagnostikos tyrimuose bei galimybés
taikyti mazesniems duomeny rinkiniams. Modeliai buvo mokomi naudojant
metodika, kuri iSskiria ypatybes i§ skalogramy ir spektrogramy [111].
Mokymas buvo atliktas specialiai tyrimui sukomplektuotame kompiuteryje
su ,,Windows® 10 operacine sistema (Microsoft Corporation, Redmondas,
Vasingtonas, JAV), kuris buvo aprupintas Intel® Core™ i7-12700K proce-
soriumi, 64 GB RAM ir NVIDIA GeForce RTX 3060 vaizdo plokste su
12 GB VRAM (NVIDIA Corporation, Santa Clara, Kalifornija, JAV).

Duomeny rinkinys buvo padalintas santykiu 80/20 mokymui ir testa-
vimui [112]. Padalintuose duomenyse buvo proporcingai paskirstyti NAG,
SAK ir DAK plauciy garsai trijuose skirtinguose GBT lygiuose (be GBT,
GBT SITS-40 lygyje, GBT SITS-20 lygyje). MM metu mokymo duomenys
buvo suskirstyti i devynias dalis, kad biity uztikrintas panasus tikslo klasiy
pasiskirstymas kiekvienoje dalyje ir pagerintas MM modeliy veikimas.

Tre¢ia uzduotis buvo jvertinti MM modeliy gebéjimg atpazinti tris
plauciy garsy klases esant trims skirtingiems GBT lygiams. Kiekvienos dalies
veiklos metrika buvo surinkta ir suskaiiuota vidutiné verté, kad biity
pateiktas geriausias modelio veiklos jvertinimas. I§ viso buvo atlikta 30 itera-
cijy (paleidimy) kiekvienam modeliui, jskaitant klasiy disbalanso valdyma,
kryZminés patikros atlikima, modeliy mokyma ir veiklos metriky skai¢iavimag
[114]. Pasirinkus geriausig rezultata gavusji MM modelj i§ 24 kurty varianty
(12 MM modeliy, pagristy spektrogramomis, ir 12 — skalogramomis), mode-
lis buvo dar kartg patikslintas, o vidutiniam MMC skai¢iavimui buvo atlikti
45 paleidimai.
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Ketvirta uzduotis buvo jtraukti medicinos studentus ir juos apmokyti
plauciy auskultaciniy garsy interpretavimo, naudojant specialiai sukurtg
mokymo (-si) svetaing.

Svetaing, sukurta su mokymo ir testavimo skyriais bei buvo s¢kmingai
panaudota ankstesniame tyrime [109]. Mokymo skyriuje buvo pateikti nor-
malils ir patologiniai auskultaciniai plauciy garsai bei jy savybiy apibudi-
nimas zodziais. Mokymo skyriuje buvo 101 plauciy garsy jrasas, i§ kuriy
54 proc. buvo DAK ir SAK. Testavimo skyrius buvo sudarytas atsitiktiniu
biidu ir apémé 54 garso jraSus, susidedancius proporcingai i§ NAG, SAK ir
DAK klasiy plauciy garsy. Pries§ inicijuojant tyrimg svetainé buvo iSbandyta
su 15 studenty pilotingje studijoje, siekiant jvertinti tinklalapio funkcionalu-
ma, efektyvuma ir paSalinti galimus tinklalapio veikimo nesklandumus, o
surinkti duomenys panaudoti imties dydzio skai¢iavimui. Papildomai svetai-
ne¢ perziiiréjo gyd. pulmonologas dél kokybés uztikrinimo. | galutinj tyrima
buvo jtraukti 52 antrojo ir treCiojo kurso medicinos fakulteto studentai
(MFS), atitinkantys jtraukimo kriterijus ir pateike informuotg sutikima.

Penkta uzduotis buvo jvertinti studenty geb¢jima atpazinti tris plauciy
garsy klases esant trims skirtingiems GBT lygiams.

Po 4 dieny mokymo studentai buvo iSbandyti, ar geba teisingai atpaZzinti
NAG, SAK ir DAK, atlikdami 3 testus, kuriy kiekvienas turéjo skirtingus
GBT lygius (be GBT, GBT SITS-40 lygyje, GBT SITS-20 lygyje). Vertini-
mas buvo atliktas toje pacioje svetaingje, tinklalapio testavimo skyriuje.

Sesta uzduotis buvo jvertinti galima skirtingg GBT poveikj medicinos
studenty ir geriausiy MM modeliy geb¢jimui atpazinti skirtingas plauciy
garsy klases.

Galiausiai, septinta uzduotis buvo taikyti Friedmano testa su poriniu
palyginimu, kad biity palyginti geriausio MM modelio ir medicinos studenty
MKK reikSmés visuose skirtinguose GBT lygiuose ir visose trijose plauciy
garsy klasése. Rezultaty statistinis reikSmingumo lygmuo vertintas, esant
p <0,05.

4.5. Statistiné analizé

Duomeny analizé MM modeliy ir LSMU studenty auskultacijy interpre-
tavimo rezultatams jvertinti buvo atlikta naudojant ,,Microsoft® Excel®
(Microsoft Corporation) skai¢iuokle ir JASP (ver. 0.18.3; Jeffreys’ Amazing
Statistics Programme, The Jamovi project, Sidnéjus, Australija) statistikos
paketg [126]. Bei IBM® SPSS® ver. 29 (IBM Inc., Armonkas, Niujorkas,
Jungtinés Amerikos Valstijos). p reik§me, mazesné arba lygi 0,05, buvo lai-
koma statistiskai reikSminga. Rezultatai buvo pateikti lentelése ir apibendrinti
»dézutés ir isy* pobiidzio (boxplot) diagramose.
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Atliekant duomeny valyma, septyni subjektai buvo pasalinti i§ tolimes-
nés statistinés analizés, nes jie nesugebéjo uzbaigti visy trijy testavimy. Todél
statistiné analizé buvo atlikta 45 i§ 52 subjekty.

Rezultatai neatitiko normalaus pasiskirstymo, todél tolesniam vidurkiy
analizavimui buvo naudojami neparametriniai testai. Wilcoxono rangy suma-
zinimo testas jvertino mokymy poveikj studenty gebéjimui tiksliai atpazinti
plauciy garsus, o Friedmano testas buvo naudojamas analizuoti trijy GBT
lygiy poveikj skirtingy plauciy garsy klasiy identifikavimui su dviem laisvés
laipsniais. Galiausiai buvo atlikta post hoc palyginimo analizé, kad biity
jvertintas medicinos studenty gebéjimas atpazinti plauciy garsy klases (NAG,
SAK ir DAK) atskirai pagal tris skirtingus GBT lygius.

Studenty garsy interpretavimo testy rezultatai i§ mokomosios/testavimo
svetainés surinkti naudojant MongoDB® (MongoDB, Inc., Niujorkas, JAV)
programing jrangg ir jradyti j ,,Microsoft® Excel® (Microsoft Corporation)
skaiciuokle tolimesnei statistinei analizei.

MM modeliy veikimas buvo jrasytas naudojant Anaconda® (Austin, TX,
JAV) su Jupyter Notebook 6.4.7, naudojant ,,Python* pakety maSininio
mokymosi mokymui ir vertinimui, ir i§saugotas CSV formatu.

Norint palyginti maSininio mokymosi jrankius, buvo atliktas Friedmano
testas su post hoc poriniy palyginimy analize, siekiant palyginti 24 skirtingy
MM modeliy variacijy diagnostinj tikslumg. Norint palyginti 12 spektro-
gramy ir 12 skalogramy pagristy MM modeliy nasuma, buvo naudojamas
Wilcoxono pasiraSyty rangy testas. p < 0,05 buvo laikoma statistiSkai reiks-
minga.

5. REZULTATAI

5.1. Tyrimo populiacijos charakteristikos

5.1.1 lentelé. Aprasomoji lentelé, kurioje pateikiama populiacija, is kurios
buvo gauti plauciy garsai tyrimui

Plaucdiu MOtfrq . V}il:ll Bendras Bensl.ras
arsai Moterys amzius Vyrai amzius skaidius amzius
g (SN) (SN) (SN)
NAG 26 69.5 (16.9) 26 56.5 (18.6) 52 63.0 (18.0)
SAK 10 75.5 (8.4) 13 66.0 (12.2) 23 70.1 (11.5)
DAK 12 78.7 (12.3) 21 69.0 (11.7) 33 72.5 (12.7)
Bendras 48 73.1(14.7) 60 62.9 (16.0) 108 67.4 (16.2)

SN — standartinis nuokrypis.

168




5.1.2 lentelé. Aprasomoji lentelé, tyrime dalyvavusiy medicinos studenty
Iyties ir amziaus analizé

Motervs Motery Vvrai aYnyilillis Bendras Bendras
Y$ | amzius (SN) y SN skaitius | amZius (SN)
32 219 (2.4) 13 21.6 (3.1) 45 21.8 (2.6)

SN — standartinis nuokrypis.

5.2. MasSininio mokymosi modeliy efektyvumo analizé

I§ viso 24 masininiy modeliy variantai buvo iSbandyti naudojant spektro-
gramas ir skalogramas, esant trims GBT triuk§mo lygiams (be pridétinio
triukSmo, GBT SITS-40 ir GBT SITS-20). Poveikis buvo stebimas trims
pagrindinéms plauciy garsy klaséms: NAG, SAK, DAK.

Modelio efektyvumo palyginimui pagrinde buvo naudojamas ,,receiver
operating characteristic area under the curve“ — plotas po sprendimus pri-
imanciojo ypatybiy kreive (ROC-AUC). Visi modeliai buvo tikrinami del
bendro GBT poveikio jy veikimui taikant Friedmano testa.

5.2.1 lentelé. Dvylikos spektrogramy pagristy modeliy nasumas pagal ROC-
AUC balus

Spektrogramomis ROC-AUC, Testo Laisvés
pagristas modelis mediana (IQR) statistika | laipsniai P
AdaBoost 0.800 (0.689-0.853)
CatBoost 0.857 (0.764-0.880)
Extra Trees 0.820 (0.691-0.859)
Gradient Boosting 0.874 (0.772-0.897)
Histgradient 0.865 (0.802-0.894) 803 11 <0.001
K-NN 0.751 (0.638-0.753)
LightGBM 0.856 (0.782-0.879)
Logistic Regression 0.863 (0.781-0.876)
MLP 0.863 (0.786-0.902)
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5.2.1 lentelés tesinys

Spektrogramomis ROC-AUC, Testo Laisvés

pagristas modelis mediana (IQR) statistika | laipsniai P
Random Forest 0.833 (0.694-0.873)
SVM 0.836 (0.746-0.853) 803 11 <0.001
XGBoost 0.871 (0.782-0.895)

Geriausiai spektrogramomis pagrijsti algoritmai pagal rezultaty mediang buvo visi stiprinimo
modeliai: Gradient Boosting ir XGBoost, Histgradient. Histgradient buvo antras pagal
vidurkj MM modelis, taciau jo siauresnis tarpkvartilinis intervalas su didziausiu Q1 kvartiliu
i8 trijy geriausiai pasirodziusiy MM modeliy. IQR — tarpkvartilis (interkvartilis). ROC-AUC
(angl. Receiver Operating Characteristic Area Under the Curve) — plotas po sprendimus
priimanciojo ypatybiy kreive.

5.2.2 lentelé. Dvylikos skalogramy pagristy modeliy nasumas pagal ROC-

AUC balus

Logistic Regression

0.756 (0.671-0.814)

MLP

0.741 (0.590-0.788)

Random Forest

0.768 (0.635-0.808)

SVM

0.740 (0.658-0.810)

XGBoost

0.727 (0.659-0.859)

Skalograma pagristas ROC-AUC, Testo Laisvés
modelis mediana (IQR) statistika | laipsniai P

AdaBoost 0.735 (0.658-0.847)
CatBoost 0.794 (0.679-0.881)
Extra Trees 0.746 (0.590-0.788)
Gradient Boosting 0.752 (0.685-0.867)
Histgradient 0.733 (0.671-0.850)
K-NN 0.590 (0.528-0.658)

- 574 11 <0.001
LightGBM 0.732 (0.673-0.847)

Geriausiai pasirod¢ skalogramy pagrindu veikiantys MM algoritmai, remiantis medianiniu
rezultatu, i§ jy vienas buvo stiprinamojo (angl. boosting) tipo, vienas ,,papildomy medziy*
(angl. extra trees) ir vienas klasikinis modelis. MM modeliai kurie pateko j virsutinj veiklos
kvartilj: CatBoost, Random Forest ir Logistic Regression. IQR — tarpkvartilis (interkvartilis).
ROC-AUC (angl. Receiver Operating Characteristic Area Under the Curve) — plotas po
sprendimus priimanciojo ypatybiy kreive.
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5.2.3 lentelé. Dvylikos spektogramy ir dvylikos skalogramy modeliy palygi-
nimas pagal ROC-AUC balus

12 MM spectrogramy 12 MM scalogramuy Testo
mediana (IQR) mediana (IQR) statistika P
0.837 (0.638-0.902) 0.735 (0.528-0.881) 583275 <0.001

Wilcoxono testas rodo, kad 12 MM modeliy, pagristy spektrogramomis ir skalogramomis,
reikSmingai skiriasi, o spektrograma pagrjsty modeliy medianos reikSmés yra daug didesnés,
palyginti su skalograma pagrjstais modeliais. ,,JQR* — tarpkvartilis (interkvartilis). ,,ROC-
AUC* (angl. Receiver Operating Characteristic Area Under the Curve) — plotas po sprendi-
mus priimanciojo ypatybiy kreive.

5.3. Medicinos fakulteto studenty veiklos rezultatai

IS viso 45 medicinos studentai per 4 dienas bandé iSmokti trijy klasiy
plauciy garsus ir atlikti testa esant trims GBT triukSmo lygiams (be papil-
domo triuk§mo, GBT SNR-40 ir GBT SNR-20).

Boxplot diagramoje 5.3.1 pav. pavaizduota Medicinos studenty trijy
klasiy plauciy garsy atpazinimo testy rezultatai, kuriuose jvertinama trijy
Gauso baltojo triukSmo lygiy jtaka studenty gebéjimui atpazinti sausy
auskultaciniy karkaly (SAK), drégny auskultaciniy karkaly (DAK) ir
normaliy auskultaciniy garsy (NAG) plauciy garsy klases.

Friedmano testas parodé¢, kad gebéjimas atpazinti NAG ir DAK reiks-
mingai skyrési (atitinkamai p = 0,042, 0,021), esant trims GBT lygiams, o
reikSmingo BT lygiy poveikio SAK garsams nepastebéta (P =0,311). siekiant
jvertinti trijy GBT lygiy jtaka gebéjimui atpazinti NAG ir DAK, atliktas post
hoc palyginimas. Nustatyti statistiSkai reik§mingi skirtumai atpazjstant plau-
iy garsus tarp be GBT ir SITS-40 NAG atveju, tarp be GBT ir SITS-40 bei
tarp SITS-40 ir SITS-20 DAK atveju (atitinkamai p = 0,016, 0,013, 0,023).
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45 medicinos studenty testy rezultaty grafikas, esant trims skirtingiems
GBT lygiams trims skirtingoms plauciy garsy klaséms
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5.3.1 pav. Medicinos studenty trijy klasiy plauciy garsy atpazinimo
testy rezultatai, esant skirtingiems GBT lygiams. Trijy Gauso baltojo
triuksmo (GBT) lygiy jtaka studenty gebéjimui atpaZinti sausy karkaly
(SAK), drégny karkaly (DAK) ir normaliy plauciy garsy (NAG) klases
GBT — Gauso baltasis triuk§mas, MKK — Motiejaus koreliacijos koeficientas, SITS — signalo

ir triuk§mo santykis, NAG — normalis auskultaciniai garsai, DAK — drégni auskultaciniai
karkalai, SAK — sausi auskultaciniai karkalai.

5.4. Geriausio MM modelio rezultaty palyginimas su medicinos
studenty tikslumu

Studenty rezultatai buvo perskaiciuoti j tikras teigiamas, klaidingas tei-
giamas, tikras neigiamas, klaidingas neigiamas, Sios reik§més buvo naudo-
jamos apskaiciuojant kiekvienos garso klaseés MKK, jautruma, specifiSkuma,
pagal kiekvieng GBT lygj (be GBT, GBT SITS-40 lygyje, GBT SITS-20

lygyje).
Gauti rezultatai buvo panaudoti nubraiZzant déZutés ir Gsy diagrama
(boxplot) ir atliekant Friedmano testa su post hoc analize (5.4.1 pav.).
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Boxplot diagramoje (5.4.1 pav.) matomas skirtingy Gauso baltojo triuks-
mo (GBT) lygiy poveikis Histgradient masininio mokymosi (MM) modeliui
ir Medicinos Fakulteto studentams (MFS) identifikuoti trijy klasiy auskul-
tacinius plauciy garsus, matuojamas Motiejaus koreliacijos koeficientas
(MKK).

Studenty auskultaciniy garsy atpazinimo rezultatai buvo panasSis |
spektrogramomis pagristo Histgradient masininio modelio rezultatus, kai |
modelj nepridéta GBT, nes nepastebéta reikSmingy skirtumy tarp NAG,
SAK, DAK (p > 0,05 visoms klaséms). Masininio mokymosi modelio Motie-
jaus koreliacijos koeficiento rezultatai buvo 0,471 (0,415-0,543), 0,587
(0,522-0,654), 0,485 (0,422-0,552), lyginant su MFS Motiejaus koreliacijos
koeficiento rezultatais 0,500 (-0,250-1,000), 0,500 (0,000-1,00), 0,500
(-0,250-1,000), 0,500 (-0,250—-1,000) atitinkamai NAG, SAK, DAK auskul-
taciniy garsy klasése.

SITS-40 Gausinio uzterStumo lygmenyje tarp visy trijy auskultaciniy
garsy klasiy atpazinimo buvo statistinis reikSmingumas: NAG, SAK, DAK
(p=0,035,p = 0,002, p = 0,000), masininio mokymosi Histgradient rezultaty
balai buvo 0,341 (0,288-0,422), 0,256 (0,180-0,374), 0,557 (0,491-0,621),
palyginus su medicinos fakulteto studenty gautais rezultatais 0,500 (—0,250—
1,000), 0,500 (0,000-1,000), 0,000 (-0,250-1,000), 0,000 (-0,250-1,000)
atitinkamai Siose garsy klasése: NAG, SAK, DAK. Tuo tarpu medicinos
fakulteto studentai parodé geresnius rezultatus atpazjstant normalius plauciy
garsus (NAG) ir sausus karkalus (SAK), o MM Histgradient modelis, esant
SITS-40 Gausinio uzterStumo lygmeniui pranoko zmogiskyjy tiriamyjy
subjekty (t. y. studenty) rezultatus geriau atpazjstant drégnus auskultacinius
karkalus (DAK).

Esant Gausinio uzterS§tumo lygmeniui SITS-20, studentai parodé statis-
kai reikSmingai geresnius auskultaciniy garsy atpazinimo rezultatus visose
auskultaciniy garsy klasése, lyginant su Histgradient MM modeliu (p = 0,000
NAG ir SAK klaséms, p = 0,009 DAK klasei), rezultatai buvo 0.116 (-0,013—
0,173), 0,001 (-0,095-0,255), 0,000 (-0,045-0,067), palyginti su studenty
gautais rezultatais 0,500 (-0,250-1,000), 0,500 (0,000-1,000), 0,500 (—0,250—
1,000), 0,500 (-0,250-1,000) atitinkamai NAG, SAK, DAK auskultaciniy
garsy klasése.
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Boxplot diagramoje (5.4.2 pav.) pavaizduotas Histgradient masininio
mokymo (MM) ir medicinos fakulteto studenty (MFS) specifiskumo palygi-
nimas trims auskultaciniy garsy klaséms (NAG, SAK, DAK), esant skirtin-
giems Gauso baltojo triuk§mo (GBT) lygiams.

Kai | modelj nepridéta GBT, Histgradient modelio ir MFS specifiSkumo
pasiskirstymas NAG ir SAK auskultaciniy garsy klasiy atpazinimui, reiks-
mingai nesiskyre (p > 0,05 abiem klaséms): Histgradient specifiSkumas buvo
0,471 (nuo 0,415 iki 0,543) ir 0,587 (nuo 0,522 iki 0,654) NAG ir SAK
klaséms, o MFS specifiSkumas 0,500 (nuo —0,250 iki 1,000) ir 0,500 (nuo
0,000 iki 1,000) toms pacioms auskultaciniy garsy klaséms. Taciau drégny
auskultaciniy karkaly atveju Histgradient MM modelis parodé reikSmingai
didesn;j specifiSkuma nei MF studentai (p = 0,000): Histgradient specifisku-
mas buvo 0,485 (nuo 0,422 iki 0,552), palyginus su MFS, kuriy specifisku-
mas buvo 0,500 (nuo —0,250 iki 1,000).

Esant Gauso baltojo triuk§mo SITS-40 lygmeniui, reikSmingy skirtumy
tarp abiejy lyginamyjy grupiy pagal SAK auskultaciniy garsy klas¢ nenu-
statyta (p > 0,05), taciau reikSmingi skirtumai nustatyti atpazjstant normalius
plauciy garsus ir drégnus auskultacinius karkalus (p = 0,000, p = 0,024).
Histgradient MM modelio NAG, SAK ir DAK auskultaciniy garsy klasiy
atpazinimo specifiSkumas atitinkamai buvo 0,341 (nuo 0,288 iki 0,422),
0,256 (nuo 0,180 iki 0,374) ir 0,557 (nuo 0,491 iki 0,621), o MF studenty
specifiSkumas atpazjstant tas pacias auskultaciniy garsy klases buvo 0,500
(nuo —0,250 iki 1,000), 0,500 (nuo 0,000 iki 1,000) ir 0,000 (nuo —0,250 iki
1,000). Histgradient modelis pasizyme¢jo statiSkai reikSmingai geresniu
specifiSkumu atpazjstant drégnus karkalus (DAK), bet statistiskai prastesniu
rezultatu nepatologiniams plauciy garsams (NAG) esant Gauso baltojo
triuk§Smo SITS-40 lygmeniui.

PrieSingai, esant Gauso baltojo triuk§Smo auksciausiajam, SITS-20, lyg-
meniui, medicinos fakulteto studentai parodé statistiSkai reikSmingai geres-
nius garsy atpazinimo specifiSkumo rezultatus nei Histgradient MM modelis
visoms garsy klaséms (p = 0,000 visoms klaséms). Histgradient modelio
specifiSkumas buvo 0,116 (-0,013-0,173), 0,001 (-0,095-0,255) ir 0,000
(-0,045-0,067) NAG, SAK ir DAK auskultaciniy garsy klaséms, lyginant su
MF studenty minéty auskultaciniy klasiy garsy atpazinimo specifiSkumu
0,500 (-0,250-1,000), 0,500 (0,000-1,000) ir 0,500 (-0,250-1,000).
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Boxplot diagramoje (5.4.3 pav.) pavaizduotas Histgradient masininio
mokymosi (MM) ir medicinos fakulteto (MF) studenty jautrumo pasiskirsty-
mas atpazjstant tris auskultaciniy plauciy garsy klases (NAG, SAK, DAK),
esant skirtingiems Gauso baltojo triuk§mo (GBT) lygiams.

Kai | modelj nepridéta Gauso baltojo triuk§mo, Histgradient MM mode-
lio ir medicinos fakulteto studenty jautrumo, atpazjstant auskultacinius garsus,
pasiskirstymai reik§mingai nesiskyrée tik vienoje auskultaciniy plauciy garsy
klaséje, tai yra atpazjstant drégnus karkalus (DAK) (p > 0,05). Taciau statis-
tiskai reikSmingas skirtumas yra tarp studijos grupiy jautrumo, atpazjstant
normalius auskultacinius garsus (NAG) ir sausus karkalus (SAK) (p = 0,030
ir p = 0,000). MM Histgradient modelio jautrumas buvo 0,471 (415-0,543)
normaliy auskultaciniy garsy (NAG), 0,587 (0,522-0,654) sausy auskulta-
ciniy karkaly (SAK) ir 0,485 (0,422-0,552) drégny auskultaciniy karkaly
(DAK) garsy klasése, lyginant su MF studenty jautrumu 0,500 (—0,250—
1,000), 0,500 (0,000—-1,000) ir 0,500 (—0,250—1,000) tose paciose garsy atpa-
zinimo klasése.

Esant Gausinio uzterStumo vidutiniam lygmeniui, SITS-40, reikSmingy
skirtumy tarp abiejy tiriamyjy grupiy jautrumo identifikuojant DAK auskul-
tacing plauciy garsy klase nenustatyta (p > 0,05), taciau reikSmingi skirtumai
nustatyti atpazjstant normalius auskultacinius garsus ir sausus auskultacinius
karkalus (p = 0,000 abiem klaséms). Histgradient MM modelio jautrumo
pasiskirstymas identifikuojant NAG, SAK ir DAK auskultacinius plauciy
garsus atitinkamai buvo 0,341 (0,288-0,422), 0,256 (0,180-0,374) ir 0,557
(0,491-0,621), o MF studenty jautrumas atpazjstant plauciy garsus tose
paciose auskultaciniy garsy klasése buvo 0,500 (—0,250-1,000), 0,500
(0,000-1,000) ir 0,000 (-0,250—-1,000).

MM Histgradient modelio jautrumas, esant SITS-40 Gausinio uzterStu-
mo lygmeniui, pranoko zmogiskyjy tiriamyjy subjekty (t. y. studenty) jautru-
ma atpazjstant nepatologinius plauciy garsus (NAG). MM modelio ir
studenty jautrumas tolygus identifikuojant drégnus auskultacinius karkalus
(DAK) ir statistiSkai prastesnis jautrumas, atpazjstant sausus auskultacinius
karkalus (SAK.)

Esant Gauso uzterStumo auks$¢iausiam lygmeniui, SITS-20, MF
studentai parodé statistiSkai reikSmingai geresnius jautrumo rezultatus nei
Histgradient MM modelis drégny auskultaciniy karkaly (DAK) atpazinimo
atzvilgiu (p = 0,000). Taciau statistiSkai reikSmingo skirtumo tarp abiejy
lyginamyjy grupiy nebuvo, zvelgiant | NAG ir SAK plau¢iy klasiy
identifikavima (p > 0,05). MM Histgradient modelio jautrumas buvo 0,116
(-0,013-0,173), 0,001 (-0,095-0,255) ir 0,000 (-0,045-0,067) NAG, SAK ir
DAK auskultaciniy garsy klaséms, tuo tarpu MF studenty jautrumas 0,500 (—
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0,250-1,000), 0,500 (0,000-1,000) ir 0,500 (-0,250-1,000) toms pacioms
auskultaciniy garsy klaséms identifikuoti.

ISVADOS

1. MaSininio mokymosi modeliai bei medicinos studentai gali biiti iSmokyti
identifikuoti tris auskultaciniy plauciy garsy klases, per trumpa laika,
taCiau su skirtingais tikslumo lygiais.

2. Spektrogramy pagrindu sukurti masininio mokymo modeliai parodé Zy-
miai geresnj tiksluma lyginant su skalograminiais masininio mokymosi
modeliais.

3. Tiek medicinos studentus, tick MM modeliy geb¢jimus atpazinti plauciy
garsus paveikeé padidéjes GBT lygis, o masininio mokymosi modeliai
dazniau buvo paveikiami didZiausio garso uZzterStumo (SITS-20) lyg-
mens, kuriame gebé¢jimas atpazinti normalius plauciy garsus, drégnus ir
sausus karkalus reikSmingai sumaz¢jo. Tuo tarpu medicinos studenty
drégny karkaly atpazinimo tiksluma reikSmingai paveiké vidutinio lygio
GBT uZzterStumas (SITS-40).

4. Masininio mokymosi Histgradient modelis, esant SITS-40 Gausinio
uzterStumo lygmeniui, pranoko zmogiskyjy tiriamyjy subjekty (t. y. me-
dicinos fakulteto studenty) rezultatus atpazjstant drégnus auskultacinius
karkalus didesniu Motiejaus koreliacijos koeficientu, todel §is MM
modelis gali biiti pritaikomas kaip diagnostinis pagalbininkas esant
vidutinio garso uzterStumo lygmeniui.

PRAKTINES REKOMENDACILJOS

1. Visi gydytojai, slaugytojai, rezidentai ir medicinos studentai turéty zinoti
savo diagnostinj tikslumg pagal tam tikrg plauciy garsy klasg ir triukSmo
lygi ju darbo aplinkoje.

2. Visi biisimi masininio mokymosi modeliai turéty biiti kuriami ir verti-
nami aplinkos triuk§mo saglygoms.

3. Histgradient stiprinantysis masininio mokymosi modelis turéty biiti
toliau tyrin¢jamas ir plétojamas, siekiant padeéti identifikuoti drégny
karkaly grupei priskiriamus plauciy garsus, esant garso uzterStumo saly-
goms.
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Visi modeliai, naudojami kaip pagalbin¢ priemon¢ plauciy garsy diag-
nostikoje klinikiniame sveikatos prieziiiros specialisty darbe, turéty biiti
vertinami pagal skirtingus aplinkos triuk§mo lygius.

Integruojant masininio mokymosi modelj, kaip diagnostikos pagalbi-
ninkg sveikatos prieziiiros specialistui, atlieckan¢iam auskultacija, visuo-
met reikéty jvertinti ir atsizvelgti j specialisto auskultacijos testo rezulta-
tus ir jautruma tam tikram konkre¢iam garsui, esant tam tikroms aplinkos
triukSmo salygoms. Taipogi reikeéty jvertinti konkretaus naudojamo
masininio mokymosi modelio darbo rezultatus, jo diagnostinj jautruma
tomis paciomis saglygomis, tuomet pritaikyti masininj model;j turintj ge-
resnj jautrumg kaip pagalbing priemong¢ konkretaus sveikatos specialisto
auskultacijy interpretavimo asistavime.
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APPENDIX

Annex 1
PACIENTO ISTYRIMO ANKETA
Data
Suteiktasis tiriamojo kodas
Tiriamajj apibiidinantys dokumentiniai duomenys
Lytis O Vyras Amzius (m.)
O Moteris
Ugis (cm) Svoris (kg)
Diagnoze (TLK-10-AM kodas) Pagrindine
Gretutiné
Komplikacijos
Anamnezés ypatumai (turintys jtakos plauciy auskultaciniams garsams)
Persirgtos ligos | o Plau¢iy Zalingi jpro¢iai |0 Riko
O Nertiko
ONebertko ~ mety
o Sirdies
Objektyvus iStyrimas
Dusulys O Taip Kvépavimo
ONe daznis (k./min.)
Karkalai O Sausi Periferinés OYra
O Dreégni edemos O Néra
O Misriis
SpOx2 (proc.) AKS (mmHg)
SSD (k./min.)

Instrumentiniy ir laboratoriniy tyrimy rezultatai

BKT O Anemija

(bakterinis)
OKita

0 Uzdegiminis procesas

CRB
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Plauciy O Norma D-dimerai
rentgenologiniai | 0 Pneumonija (jei atlikta)
pakitimai O Bronchitas

O Peribronchiniai

pakitimai Plauciy KT

OKita rezultatai

(jei atlikta)

Plauciy garsy jrasai (auskultuoti garsai ir pastabos)

Pirmas taskas

Antras taskas

Trecias tasSkas

Ketvirtas taskas

Penktas taskas

Sestas taskas
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7

KAUNO REGIONINIS BIOMEDICIN]NIU TYRIMU ETIKOS I(OMITETAS

Annex 2

LEIDIMAS ATLIKTI BIOMEDICININ] TYRIMA

2021-05-11  Nr. BE-2-57

Biomedicininio tyrimo pavadinimas: ,,Plaudiy ir Sirdies auskultacijy patologiniy garsy vertinimas,

taikant dirbtinio intelekto analize*

Protokolo Nr.: 1.3
Data: 2021-04-25
Versija: 1.2

Asmens informavimo forma:

Versija 1.3, data: 2021-04-13

Pagrindinis tyréjas:
Biomedicininio tyrimo vieta:
Istaigos pavadinimas:

Gyd. Haroldas Razvadauskas
Lietuvos sveikatos moksly universiteto Kauno ligoning, Vidaus

ligu klinika

Josvainiy g. 2, LT-47141, Kaunas

Iivada:

Kauno regioninio biomedicininiy tyrimy etikos komiteto posédZio, jvykusio 2021 m. geguZés mén. 4 d.
(protokolo Nr. 2021-BE10-0005) sprendimu pritarta biomedicininio tyrimo vykdymui.

Mokslinio eksperimento vykdytojai jsipareigoja: (1) nedelsiant informuoti Kauno Regioninj biomedicininiy Tyrimy Etikos
komitety aplc v:sus mnum.arytus nlveju% susuu.ﬂus su studuox \-'ykdymu 2) |k| sausm 15 d:cnoei pmelkn metinj studijos

Kauno regioninio biomedicininiy tyrimy etikos | nariai

Nr. Vardas, Pavardé Veiklos sritis Dalyvavo posédyije

1. Doc. dr. Gintautas Gumbrevidius Klinikiné farmakologija Taip

% Prof. dr. Kgstutis Petrikonis Neurologija Taip

3. Dr. Saulius Raugelé Chirurgija Ne

4. Dr. Lina Jankauskaité Pediatrija Taip

5. Prof. dr. Dzilda Velickiene Endukrinﬂlgg!j Ne

6. Doc. dr. Ei Peidius és sveikata Taip

7. Ausra Degutyte \-" és sveikata Taip

8. Dr. Zydriiné Luneckaité Visuomenés sveikata Taip

9. Viktorija Butinskaité Teisé Taip
Kauno regioninis biomedicininiy tyrimy etikos dirba vad is etikos pri nustatytais biomedicininiy tyrimy Etikos
istatyme, Helsinkio deklaracijoje, vaisty tyringjimo Geros klinikinés praktikos taisyklémis.

Kauno RBTEK pirmininkas
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Name, Surname:
Address:

E-mail:
Phone:
Web:

Education:

06/2020—present

09/2014-06/2020

09/2008-06/2014

09/2004-07/2007

Work experience:
12/2023—present
09/2020—present

03/2023-11/2023

06/2020-10/2022

08/2014-06/2020
08/2011-06/2014

06/2011-08/2011

06/2012-08/2012

CURRICULUM VITAE

Haroldas Razvadauskas

LSMU Kaunas Hospital Internal Medicine Department
Josvainiy 2, LT-47144 Kaunas, Lithuania
h.razvadauskas@protonmail.com

+370 612 52277
linkedin.com/in/haroldas-razvadauskas-md-26aba35a

Doctor of Philosophy Medicine
Lithuanian University of Health Science (LSMU),
Kaunas, Lithuania

Internal Medicine Physician specialisation
LSMU, Kaunas, Lithuania

Doctor of Medicine
LSMU, Kaunas, Lithuania

Bachelor of Sciences in Genetics (Hons.) 2—1, Aberystwyth
University of Wales, Aberystwyth, United Kingdom

Biomedical Signal Processing and Control Journal Reviewer

Assistant lecture at Internal Medicine Department,
LSMU Kaunas Hospital, Kaunas, Lithuania

Principle Researcher in Artificial Intelligence Application to
Pulmonary Sounds, Lithuanian University of Health Science
(LSMU), Kaunas, Lithuania

Accident and Emergency Doctor, LSMU Kaunas Hospital,
Kaunas, Lithuania

Resident Doctor, LSMU Kaunas Hospital, Kaunas, Lithuania

Principle Researcher Investigating in International Projected
with 3M company, 3M Company, Kaunas, Lithuania

Research Assistant Internship, Abbaltis Ltd., Kent, United
Kingdom

Research Assistant Internship, Abbaltis Ltd., Kent, United
Kingdom

195



Awards:

03/2023 €20,000 won for a multidisciplinary team for a project:
“Identification of pathological lung sounds using artificial
intelligence techniques (DITA)”, LSMU and KTU Innovation
Funds

12/2020 Participated in a competition and won a grant for my project:
“A prospective study on the effect of white noise on medical
students’ ability to identify three different classes of lung
sounds”, LSMU Education Funds

Skills:

Expertise in writing a study protocol.

Experience in managing international research projects.

Strong expertise in creating and collaborating within a multidisciplinary team to a set
goal.

In-depth knowledge of diagnostics and therapeutics in healthcare settings.

Robust comprehension of bioethics.

Data cleaning, feature extraction and machine learning model application via Python
on Jupyter Notebook.

Languages:

English: native
Lithuanian: native
Norwegian (Bokmal): beginner
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