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ABBREVIATIONS 

AdaBoost  – Adaptive Boosting  
AI – artificial intelligence 
ANN – artificial neural network 
AUC – area under the curve 
CAS – continuous auscultated sound 
CatBoost – Categorical data Gradient Boosting 
CKD – chronic kidney disease 
CNN – convolutional neural network 
COPD – chronic obstructive pulmonary disease 
CSV – comma-separated values 
DAS – discontinuous auscultated sound 
dB – decibel 
el. stethoscope – electronic stethoscope 
ER – emergency reception 
ET – Extra Trees 
GB – Gradient Boosting 
GWN – Gaussian white noise 
FN – false negative 
FP – false positive 
FPR – false positive rate 
HF – heart failure 
Histgradient – Histogram-based Gradient Boosting Classification Tree 
Hz – hertz 
ICF – informed consent form 
K-NN – K-Nearest Neighbors  
LightGBM – Light Gradient Boosting Machine 
LR – Logistic Regression 
MCC – Matthews correlation coefficient 
MFS – Medical Faculty student 
ML – machine learning 
MLP – Multilayer Perceptron  
ms – milliseconds 
NAS – normal auscultated sounds 
OI – organic intelligence 
PIF – personal information form 
PR-AUC – precision-recall area under the curve 
PR curve – precision-recall curve 
RF – Random Forest 
ROC-AUC – receiver operating characteristic area under the curve 
ROC curve – receiver operating characteristic curve 
s – seconds 
SD – standard deviation 
SNR – signal-to-noise ratio 
SVM – Support Vector Machiness 
TN – true negative 
TP – true positive 
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TPR – true positive rate 
WHO – World Health Organisation 
WN – white noise 
XGBoost – Extreme Gradient Boosting classifier 



98 
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INTRODUCTION 

Lung auscultation is the most important of the four cornerstones of 
pulmonary system examination. The stethoscope has become ubiquitous in 
healthcare settings for over 200 years, yet some shortcomings of subjectivity 
and noise plague it [1–3]. 

Additionally, the levels of cardiopulmonary auscultation have decreased 
in recent years. Whilst third leading cause of death across the world remains 
pulmonary diseases [4–7]. 

Though science and engineering has not stood still and for decades 
electronic stethoscopes (el. stethoscopes) were being developed [8]. This 
allowed computer-aided auscultation to develop [9]. 

More recent rapid advancements in processing compute power on the 
back of Moor’s Law with improved mathematical models has meant ever 
increasing breakthroughs and application of machine learning (ML) tools 
towards diagnostic field [10–13]. 

The synergic combination of electronic stethoscopes with artificial intel-
ligence (AI), more specifically ML models are arisen as potential solution to 
improve lung auscultation diagnostic accuracy [6]. 

Yet there very few articles that compares human subjects’ accuracy 
across large number of ML. 

Therefore, a pivotal question when physician should seek ML assistance 
under varying noise conditions cannot be answered. Without Answering 
integration of these tools is problematic and can cause more problems than 
solutions it’s going to resolve. 

Furthermore, not all lung sounds are alike. There are two main types of 
auscultation sounds: normal (NAS) and pathological. Pathological ausculta-
tion sounds can be continuous (CAS) and discontinuous (DAS). The DAS’ 
properties are heard as fine and coarse crackles, and CAS are audible as 
wheezes and bronchus sounds to the examiner’s ear. The typical properties 
of CAS are typically 80 to 1600 Hz, lasting more than 250 ms, and are 
associated with asthma and chronic obstructive pulmonary diseases. DAS are 
shorter, typically less than 20 ms in duration, with a wide frequency range 
from 100 to 2000 Hz, and are associated with congestive heart failure (HF) 
and pneumonia [14]. 
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This thesis delves deep into supervise ML models’ ability to identify 
three different classes of lung sounds under three different levels of ambient 
noise and compares confusion matrices precision-recall (PR), receiver ope-
rating characteristic (ROC) parameters under a scrutiny of statical validation 
of these models to human subjects’ ability, whilst utilising same proprietary 
dataset. 

The wealth of knowledge generated by this work aim to contribute 
towards advancing knowledge of cost effective, no invasive, point-of-care 
into the future that has potential to expand into field of ambulatory respiratory 
health monitoring arena [15–17].  
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1. AIM AND OBJECTIVES OF THE STUDY 

1.1. Main aim 

To evaluate and compare the diagnostic accuracy of machine learning 
models and medical students after training on proprietary data to identify 
correctly three classes of lung sounds under three different levels of Gaussian 
white noise (GWN). 

1.2. Objectives 

1. To train and evaluate machine learning models’ and medical stu-
dents’ ability to identify three classes of lung sounds under different 
levels of GWN.  

2. To evaluate the influence of spectrogram and scalogram on 12 
different supervised ML models’ ability to accurately identify diffe-
rent classes of lung sounds.  

3. To compare the ability of machine learning models and medical 
students to identify three classes of lung sounds under three different 
levels of GWN utilising key diagnostic metric.  

4. To identify the potential of machine learning model to function as 
diagnostic assistant under GWN conditions for three main classes of 
lung sounds. 

  



1212 

2. RELEVANCE, NOVELTY AND SIGNIFICANCE  
OF THE RESEARCH WORK 

2.1. Relevance of the research work  

Stethoscopes have existed for over 205 years [18]. The use of stethosc-
opes has allowed auscultation of the sounds produced by the body, though 
exact mechanism is still poorly understood due to lack of standardisation and 
subjectivity of the stethoscopes use [19]. These sounds can change due to 
pathologies ranging from gastroenterological, cardiovascular, renal or pulmo-
nary in nature [20–23]. Stethoscope is particularity important in cardiopulmo-
nary screening and this research work will look specifically and lung sounds. 
The pulmonary sounds associated with pathologies (adventitious lung sounds) 
assist physicians in preliminary diagnosis and decision-making regarding 
further tests and treatment the patient might need [23, 24]. 

Regrettably, there has been a noticeable decline in the practice of auscul-
tation in recent times, posing a potential threat to the quality of patient care 
[5, 25]. 

Additional auscultation depends on a relatively quiet room. However, 
increased noise levels in healthcare settings can pose another challenge for 
effective lung sound auscultation [26]. 

Yet auscultation remains a cornerstone of preliminary primary cardiopul-
monary examination and is extremely widely used in clinical settings [27]. 
Therefore, any diagnostic improvement in stethoscope accuracy, specificity, 
and sensitivity to identify lung sounds can lead to more exact diagnoses and 
better patient treatment [28]. Whilst lung diseases remains a third leading 
cause world wide [7]. Hence any improvement in pulmonary auscultation can 
lead to great positive impact on patients’ health worldwide.  

Recent developments in artificial intelligence (AI), combined with elect-
ronic stethoscopes, created conditions to gather data to train ML to standar-
dise auscultation [29]. Therefore, this seems to be an answer in the current 
environment. 

However, the robustness of human subjects or organic intelligence (OI) 
compared to ML models using the same lung sound datasets under standar-
dised ambient noise pollution conditions has not been investigated. This is 
especially relevant as medicine seeks to integrate ML models to assist deci-
sion-making while diagnosing lung diseases in patients in real life settings 
healthcare sector.  
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2.2. Novelty of the research work 

The research project is not only unique to Baltic region, but in is one of 
the kind to compare human subjects and machine learning models in 
identifying three classes of lung sounds under three levels of GWN.  

Currently, there are no studies that compared 12 ML models to human 
subjects using lung sounds from the same datasets. 

The research that exists on human subjects’ ability to identify lung 
sounds under different noise level conditions is seldom. 

The research articles that investigated the ambient noise effect on ML 
models’ accuracy are seldom and some are over a decade old, whilst during 
this time ML models have been advancing and new tools are available and 
not yet tested under aforementioned conditions. Therefor it is not by utilising 
several different models and two sound representations it is possible to add 
novel insights which models could be the most robust to noise impact and 
their applicability in decision support tools’ development.  

The research on human subject is also sparse, over 5 years old and 
performed in various environments or on paediatric patients [30, 31].  

Research articles even have contradictory conclusions, such as that most 
examiners’ ability to hear heart and lung sounds is not significantly impacted 
by extreme loudness found in emergency departments [31].  

A review article by Wallis Rory in 2019 concluded measurement of envi-
ronmental white noise levels in hospitals are inconsistent and poorly reported 
[32]. The above aforementioned factors make it hard to test hypotheses by 
replicating methodology. Therefore, application of GWN utilisation as stan-
dardised ambient noise that covers all frequencies equally to compare human 
subject and ML models with same dataset is another first.  

Whilst research that focuses on ML under different ambient noise condi-
tions are also very few and three articles can be uncovered in literature review 
[10, 30, 33]. 

Additional, some studies do not even have statistically significant number 
of data point to perform statistical analysis [10].  

Therefore, the combination of use of latest ML models, GWN ambient 
noise at three different levels and comparison to human subjects’ ability 
whilst utilising same dataset makes is research absolutely unique.  
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2.3. The application of scientific work 

The study shows the statistical and clinical significance improvement of 
training ML models and medical students to identify three main classes of 
lung sound (NAS, CAS, DAS). Furthermore, the study shows an impact of 
GWN on the DAS class of lung sounds, indicating that noise levels could 
significantly affect the ability to screen pathologies associated with these lung 
sounds, such as HF and pneumonia. Especially in light of the fact that even 
though WHO recommends hospitals to be around 35 dB they are usually 
much lauder and values can range at day time from 37 to 88.6 dB [26].  

This suggests the need to include noise in improving the auscultation 
accuracy of healthcare workers and ML models. This is crucial for maintai-
ning the importance of this non-invasive, widely available, easy-to-perform, 
low-cost stethoscope as a pillar of objective screening in a clinical setting. 
Understanding and accounting for noise could significantly enhance the 
effectiveness of lung sound identification.  

Therefore, all future healthcare workers and ML should be assessed 
under WN conditions to evaluate the robustness of auscultation accuracy, 
specificity and sensitivity in screening for adventitious lung sounds in a 
clinical setting. This is especially important if future medical staff use ML in 
AI-powered clinical decision support [34]. 
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3. LITERATURE REVIEW 

3.1. Lung auscultation 

3.1.1. Definition and description of lung auscultation and general 
introduction  
Lung auscultation is a critical clinical tool used to assess respiratory 

health by detecting sounds generated during breathing [35]. These sounds, 
traditionally classified into normal and adventitious, provide valuable 
insights into a variety of respiratory and systemic conditions. Adventitious 
sounds such as wheezes, crackles, and pleural rubs are commonly associated 
with specific pathologies, making their detection crucial for diagnosing di-
seases like chronic obstructive pulmonary disease (COPD), pneumonia, heart 
failure (HF), asthma, hydrothorax, and renal failure and chronic kidney di-
sease (CKD) [36–38]. Each of these conditions presents with characteristic 
lung sounds that guide clinical first line decision-making [28, 39]. 

For instance, in COPD and asthma, wheezes – continuous, high-pitched 
sounds – are often heard due to airway obstruction [40]. In contrast, disconti-
nuous sounds like crackles are typically found in patients with conditions 
such as pneumonia, HF, and hydrothorax, where fluid or inflammation affects 
lung tissue [41]. Fine crackles, commonly present in HF, are associated with 
alveolar fluid build-up, while coarse crackles may suggest conditions like 
pneumonia [41]. In renal failure, fluid overload can similarly cause fine or 
coarse crackles, depending on the severity of the pulmonary involvement. 

Despite the clinical importance of correctly identifying adventitious lung 
sounds, noise pollution frequently interferes with the accuracy of lung sound 
detection [42, 43]. Both environmental noise, such as conversations and 
equipment noise, stethoscope membrane rubbing on the skin and internal 
bioorganic internal noise, can obscure important auscultatory findings [44–
46]. This interference can make it difficult to distinguish between normal 
breath sounds and the pathological adventitious sounds that are key to identi-
fying diseases like HF or pneumonia [46]. 

Given the reliance on the stethoscope for primary screening of lung pa-
thologies and its ubiquitous use equipment, whilst at the same time extremely 
poorly utilisation can lead to misdiagnosis, especially in a noisy healthcare 
settings [47, 48]. This literature review aims to examine the classification of 
lung sounds in relation to specific pathologies and explore the effects of noise 
pollution on auscultation ability of human subjects and introduce exploration 
of various ML models as potential solutions. 
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3.1.2. Lung sound classification 
The lung can be classified into normal and abnormal (adventitious lung 

sounds). 
Normal lung sounds can be further divided by their sound qualities and 

locations: tracheal, vesicular sounds, bronchial, bronchovesicular [49]. 
Tracheal breath sounds are characterised by their high pitch and loud-

ness, with a hollow quality. They are most audible in the neck area. Vesicular 
sounds are primarily heard over the peripheral lung fields, especially over the 
lung bases posteriorly and laterally on both sides of the chest. The sound 
quality is soft, low-pitched, and rustling, with the inspiration phase being 
longer than the expiration. 

Bronchial sounds are primarily heard over the trachea and near the 
manubrium of the sternum. They are characterised by loud, high-pitched, and 
tubular, with expiration often louder and longer than inspiration. 

Bronchovesicular sounds are heard in the first and second intercostal 
spaces anteriorly and between the scapulae posteriorly, where the bronchi are 
close to the chest wall. The bronchovesicular sounds are a mixture of 
bronchial and vesicular, with inspiration and expiration almost equal in length 
and intensity [50]. 

These lung sounds are normal if they are heard in their normal location. 
However, if, for example, the bronchial sound is heard where only vesicular 
sound should be audible, this can be a sign of pathology.  

The adventitious lung sounds can be classified into two broad groups: 
continuous and discontinuous [51]. Continuous auscultated sounds, such as 
wheezes, rhonchi, and stridor, are characterised by a musical quality and are 
typically associated with airway obstruction. These sounds can vary in pitch 
and duration, often lasting over 250 ms. 

Discontinuous auscultated sounds, such as crackles or rales, are non-
musical and characterised by brief, intermittent sounds typically lasting less 
than 20 ms [52]. 

Sadly, inconsistency persists in terminology, and even in English lite-
rature, “crackles” and “rales” are used interchangeably by pulmonary phy-
sicians.  

The discontinuous lung sounds have a very broad range of frequencies, 
and in combination with their short duration, poorer identification of these 
sounds by healthcare workers as compared to continuous lung sounds. 
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Another example of inconsistency has been historical concerning conti-
nuous lung sounds with the terms like “wheeze” and “rhonchus” sometimes 
used interchangeably [53]. Therefore, even though the research will use the 
current definitions of normal, continuous and discontinuous lung sounds, it is 
important to understand that these terms are quite broad.  

3.1.3. Adventitious lung sounds and associated pathologies 
epidemiology 
Continuous lung sounds are associated with pathologies such as asthma 

and chronic obstructive pulmonary disease (COPD) [54]. 
Discontinuous lung sounds are often associated with conditions like 

pneumonia and HF, crackles (a type of discontinuous lung sound) can be 
found in early onset of COPD [54, 55]. 

3.1.4. Current diagnostic accuracy of physicians and AI models 
the stethoscope according to lung sound classes 
The sensitivity and specificity for three classes of lung sounds vary quite 

significantly between AI models and physicians.  
The sensitivity is poor, and specificity is suitable for normal (NAS) lung 

sound detection by physicians and AI models. CAS sounds like wheezing are 
much easier to detect for physicians and AI models with good sensitivity and 
specificity. 

Finally, DAS lung sound detections by both AI and physicians have 
shown good sensitivities but poor specificity [56]. 

3.2. Machine learning models 

3.2.1. Machine learning model definition and description 
Machine learning (ML) models are algorithms that can trained on data to 

make correction decisions [57, 58]. ML models involve three main steps; 
training, validation and testing. The classical ML models can be categorised 
into two broad groups supervised learning and unsupervised learning [56]. In 
the latter group, an ML model tries to find structure in the data by itself via 
clustering or dimensionality reduction. Supervised models work on usually 
human-labelled data that allows the ML to know the target at the start of 
training; this type of method is very taxing on human resources and can have 
mislabel data; however, with well-prepared data, which is of paramount 
importance, it can lead to highly accurate models [59, 60]. 
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3.2.2. Supervised machine learning model types 
The main focus the thesis is to evaluate the performance of 12 supervised 

ML models compared to human subjects in recognising three classes of lung 
sounds under three levels of GWN. 

Though there are a significant number of ML models that can be used to 
for lung sound analysis we will discuss the most commonly used.  

Logistic Regression (LR) is one of the simplest models, Logistic 
Regression can still be very effective for binary classification problems [61]. 
Though for situations that needs model to classify outcomes into three or 
more categories a multinomial Logistic Regression can be applied.  

Support Vector Machiness (SVM) is a classifier that finds an optimal 
hyperplane that separates different classes. Features such as spectral content 
or temporal characteristics of lung sounds are used for effective classification. 
This method has been has been widely use and achieved reasonable diag-
nostic accuracy of in a number of studies [62, 63].  

K-Nearest Neighbors (KNN) is a type of instance-based learning, or lazy 
learning, where the function is only approximated locally and all computation 
is deferred until classification. The model was previously utilised in pulmo-
nary sound research [64].  

Random Forest (RF) is ensemble learning method uses multiple decision 
trees to classify data. For lung sound recognition, Random Forest can provide 
robust predictions by averaging multiple tree outcomes, reducing overfitting 
and handling noise in data effectively [65].  

Extra Trees or Extremely Randomised Trees (ET) is an ensemble ML 
model that combines extensive number of different trees in similar fashion to 
RF but with additional randomisation. The ET has an advantage of working 
well with high dimensionality which can come in forefront whilst working 
with lung sounds. Though major drawback that this model has as we step 
away from simpler model such as RF it gets harder to understand why it 
works well or does not, so transparency is reduced and becomes less inter-
pretable. This model has been used in categorising non speech sounds signals 
into seven different classes – breath, cough, cry laugh, sneeze, and yawn [66].  

Extreme Gradient Boosting classifier (XGBoost) is a more sophisticated 
ensemble learning model than Random Forest. It belongs to family of gradient 
boosting algorithms [67]. The model has been successfully utilised in 
previous studies [68, 69].  
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Gradient Boosting (GB) or Gradient Boosting Machine is another ensemb-
le learning model. GB produced a prediction model in the form of an ensemb-
le of weak prediction models, typically decision trees. The main parameters 
that require fine tuning in this model are number of trees, maximum 
interaction between the independent variables and learning rate (shrinkage) 
[70]. The main advantage’s is high accuracy and suitability with complex 
pattern recognition. The disadvantage is it is prone to overfitting especially if 
model is note fine-tuned.  

Light Gradient Boosting Machine (LightGBM) in contrast to horizontal 
growth in XGBoost it carries out vertical growth that can reduce loss reduc-
tion and can lead to higher diagnostic accuracy. It is also fast and efficient, 
though this is more important in larger datasets. It works well with categorical 
data which can be advantageous with pulmonary long sounds. Though it 
suffers from overfitting. Research shows successful application of LightGBM 
in lung sound recognition using ICBHI-2017 database [71]. 

 Categorical data Gradient Boosting (CatBoost) is an algorithm for 
gradient boosting on decision trees. The main advantages is its robustness to 
overfitting and applicability to work with categorical features. The previous 
research has shown to be more accurate than LightGBM and XGBoost [67]. 

Adaptive Boosting (AdaBoost) is also an ensemble learning method, it 
works by combining many weak classifiers into a single strong one. It shown 
to be less prone to overfitting which can be of benefit with lung sounds 
identification [72]. Though AdaBoost is sensitive to noisy data, outliers, data 
imbalance can cause a drop in performance [73]. It has been successfully 
utilised in lung sound classification [68].  

Histogram-based Gradient Boosting Classification Tree (Histgradient) is 
another type of ensemble learning algorithm that builds tree models 
sequentially, with each new tree focusing on correcting the prediction errors 
of the previous trees in the ensemble. Histgradient has shown to have great 
robustness when it comes to concern of missing data in datasets, though it can 
be fidgety and requires optimisation through fine tuning and takes time to 
acquire most out of the model in terms of diagnostic accuracy. Histgradient 
has been utilised in emotion recognition from speech pattern changes by 
Nasifa T. Ira [74]. Therefore, this model holds a great potential in our 
research.  
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Multilayer Perceptron (MLP) is a neural network that is based on 
universal approximators. The network is created of components called nodes 
(neurons) otherwise known as perceptrons. The MLP classifier effectively 
models complex non-linear relationships, making it well-suited for capturing 
the intricacies of lung sounds. Though it requires a larger amount of data as 
before mentioned models, yet it has a lot of potential and will be a good 
reference point. Additionally, it has been used in previous research. MLP 
have demonstrated high accuracy in lung sound recognition tasks. For 
instance, MLP ML model achieved an accuracy of 99.22% on a publicly 
available respiratory sounds dataset, outperforming other machine learning 
classifiers [75]. 

3.2.3. Ambient noise and ML models 
Several research studies have been performed on applying ML models in 

identifying lung sounds with different pathologies. However, they have been 
mostly done without adding white noise (WN). Few studies investigated 
various types of WN impact on lung sound recognition by human subjects or 
ML models utilising ambient noise ranging from ambulance car, babble 
noise, Gaussian white noise (GWN), background talking, crying, electronic, 
interference and artefacts produced by intentional, unintentional stethoscope 
displacements. Only three articles analyse specifically the impacts of WN on 
ML models' ability to classify lung sounds correctly in two research articles, 
the first by Gwo-Ching Chang and Yi-Ping and the second paper by Cheng 
Gwo-Ching Chang and Yung-Fa Lai [10, 33]. 

The third research article by Dimitra Emmanouilidou and SVM classifier 
concluded that the model was overwhelmed by background noises containing 
a weaker interference component and transient bursts of audio energy led to 
added confusion to the classification [76]. Results were summarised in Table 
3.2.3.1 below. 
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3.2.4. Lung sound representations 
The lung sounds can be directly processed by machine learning models, 

though previous research shows that best results are obtained by extracting 
features from the representations and using this datasets to train the models 
[79]. The two main representations that can be used for visualisation and 
extraction of a biological audio signal are spectrograms and scalograms. ML 
models mainly use spectrograms [80]. However prior research indicates that 
scalogram’s using the Wavelet function compared to Fourier transformation 
in spectrograms can localise representation of time and frequency in a better 
fashion, hence, leading to better ML model accuracy [81]. 

Though, it is worth mentioning that machine learning models most 
commonly utilise spectrograms. Scalograms, therefore, might require more 
fine tuning or even bigger datasets to produce similar or superior diagnostic 
results, whilst using same data.  

An illustration bellow shows representations of three main classes of 
lung sounds that our research project will focus on (Fig. 3.2.4.1).  

 
Fig. 3.2.4.1. Illustration two types of representations of lung sounds 
(scalogram and spectrogram) for normal (healthy), and pathological 

(continuous and discontinuous lungs sounds) 

  

Continuous, Wheezes Discontinuous, CracklesHealthy lung sounds Continuous, Wheezes Discontinuous, CracklesHealthy lung sounds
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3.3. Ambient noise 

3.3.1. Background noise definition, description and impact on 
auscultation accuracy 
Ambient noise, in our case, is any sound other than lung sounds. They 

can be caused by background talking, stethoscope movement [82]. This type 
of noise reduces physicians' or machine learning models' ability to 
discriminate between different classes and types of lung sounds. Therefore, 
reduces the overall accuracy of the stethoscope as a diagnostic tool [83].  

3.3.2. Background noise types and levels in healthcare settings 
Background noise can have extracorporeal and intracorporeal origins and 

can be organic or inorganic in nature. The internal organic background noise 
is biological sounds in source, such as, heart sounds, active peristalsis, patient 
starting to talk or cough during auscultation process. 

The external factors can be organic and inorganic in nature. The organic 
external nature sounds can be healthcare staff, children crying, other patients 
having a conversation in the corridor. An external inorganic sounds can be 
trollies, ambulance car or medical equipment sounds. Additionally, noise can 
be produced by chest piece of the stetscopes (diaphragm) rubbing against dry 
skin or hairs of the body [84]. 

The prior research has used several type of noise, babble, emergency 
room noise, ambulance vehicles, fake crackles produce by membrane, Mili-
tary equipment helicopters and Gaussian white noise (GWN) [77, 85–87]. 
From the above-mentioned, ambient sounds used in research, GWN stands 
out as it is not only the only synthetic noise but also an ideal candidate for the 
sonic pollution impact of lung sound identification, as it pollutes each 
frequency evenly. Hence, even though it is synthetic, it can provide a great 
baseline to evaluate human and machine learning models' accuracy before 
moving to more specific sounds that could be applicable at particular settings, 
such as ambulance sirens, conversation or helicopter blades spinning. 

Therefore, GWN assist in achieving standardisation of noise pollution 
across all frequencies evenly in our methodology.  
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3.4. Human subjects selection for the study 

The auscultation is still usually performed inside hospitals by physicians, 
nurses, resident doctors, medical nurse and medical students. The main two 
reasons why acoustic stethoscopes are still preferred to electronic stethosco-
pes (el. stethoscopes) are due to costs, and synthetic sounds transmitted by 
variety of el. stethoscopes, whilst not showing clear advantages in diagnosing 
pathologies [88]. Physicians could be potentially used in the study to identify 
lung sounds, though, there are several factors that do not make them ideal 
candidate. First of all, physicians are trained already to identify lung sounds, 
they have different work hours, are different ages and with age there is an 
increased risk of hearing impairment that would need to be accounted in the 
study [89]. The study needs motivated human subjects, that have no prior 
auscultation skills, but are willing to learn the lung sounds, and in large 
enough numbers. Hence, medical students are ideal subjects for this type of 
study. 

Previous study shows, though students diagnostic accuracy is lower than 
physicians, it follows similar pattern where both physicians and medical 
students have lower ability to identify crackles (DAS class of lung sounds) 
compared to wheezes (CAS class of lung sounds) therefore, results can provi-
de as with inference in understanding how physicians and nurses could be 
affected too [90]. 

3.5. Studies examining impact of ambient noise on  
human subjects ability to accurately auscultate  

There are only a few studies examining impact of ambient noise on 
human subjects ability to accurately auscultate. The first study by Peitao Ye 
in 2022, assesses 56 participants’ ability to correctly identify a discontinuous 
class of lung sound, whilst auscultating in the presence of fake crackles [86]. 
The fake crackles are generated when the stethoscope membrane glides over 
the skin. The article concludes that these crackles can lead to misdiagnosis.  

A review paper by Jun J. Seah in 2023, primarily focuses on the advan-
cements of stethoscopes in auscultation. While it acknowledges the impact of 
extreme noise in disaster zones, chaotic situations, and helicopters it falls 
short of providing detailed insights into the effects of different classes of 
respiratory lung sounds, leaving a gap in our understanding of white noise’s 
influence on auscultation, especially in medium levels of ambient noise that 
are experience inside hospitals [91]. 
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Further literature investigation on topic of ambient noise effects on 
human subjects’ ability to auscultate revealed only two more older articles 
focusing on specific ambient noise. The first by Steven Gaydos in 2011 
looked at military helicopter’s spinning blades and concluded that extreme 
noise produced in-flight makes pulmonary auscultation a futile endeavour 
[92]. A more applicable research to civilian settings was performed by Jörg 
D. Leuppi in 2005 research on 137 patients (though only male), showed low 
value of the stethoscope in a noisy emergency reception (ER) as a diagnostic 
tool, but at the same time surrounding ambient noise did not impact final 
diagnosis. Nonetheless, the article concluded that normal lung auscultation 
results are a valuable predictor for not having a lung or heart disease. In 
contrast, wheezing was a predictor of having a lung disease [93].  

These studies are not satisfactory enough to understand at what levels the 
ambient sound will start influencing the auscultator's ability to classify lung 
sounds correctly. Therefore, it emphasises the importance of standardised 
conditions, with set noise self-pollution at exact signal-to-noise ratios (SNR). 
The literature review was summarised in Table 3.5.1. 
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4. RESEARCH METHODOLOGY 

4.1. Study design, study location, inclusion and exclusion criteria 

Prospective study carried out in Lithuania in 2020–2024. 
Study subjects: Patients hospitalized with adventitious lung sounds and 

diagnoses confirmed for pneumonia, HF, COPD, asthma, kidney failure or 
CKD, hydrothorax. Patients were diagnosed according to international 
protocols [95–104]. 

Location of the study for lung sound collection and medical student 
enrolment: the study was conducted in the Cardiology and Internal Medicine 
Diagnostic Departments of Lithuanian University of Health Sciences Kaunas 
Hospital (Josvainių 2 and Hipodromo 13 Kaunas). 

The total inpatient bed fund in 2020 was 1,620 beds. Forty-two thousand 
sixty-four patients were treated. During the pre-pandemic period (2019), the 
hospital provided about 60,000 inpatient healthcare services, and this number 
is projected to return post-pandemic [105]. 

Partial research was performed in collaboration with Prof. Evaldas Vai-
čiukynas and his colleagues from Kaunas Technology University (KTU), 
with sponsorship from the education and research funds of Kaunas University 
of Technology (Grant No. PP2023/39/4) and Lithuanian University of Health 
Sciences. 

Inclusion criteria for lung sounds recording: 
1. patient diagnosed with pneumonia; 
2. patient diagnosed with asthma; 
3. patient diagnosed with heart failure; 
4. patient diagnosed with kidney failure; 
5. patient diagnosed with COPD exacerbation; 
6. patient has adventitious lung sounds; 
7. patient 18 years or older;  
8. patient with no mental disorder; 
9. the patient was conscious and able to answer questions correctly; 
10. the patient has signed the personal information form (PIF) and the 

informed consent form (ICF). 
Inclusion criteria for medical students: 
1. LSMU medical students in their second or third year; 
2. participants 18 years or older; 
3. medical students that have no prior experience with auscultation and 

agree to participate by signing ICF. 
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Exclusion criteria for lung sounds recording: 
1. patients that refused to participate in the study; 
2. patients who could not speak Lithuanian and provide consent;  
3. patient that could not stand, sit still for auscultation to be performed. 
Exclusion criteria for medical students: 
1. students with hearing impairment or loss; 
2. students over 40-year-old; 
3. students that did not sign the consent forms.  

4.2. Study sample size calculation 

The sample size for the lung sounds recordings and the medical students 
was calculated using G*Power software (ver. 3.1.9.4; Heinrich-Heine-
Universität Düsseldorf, Düsseldorf, Germany) [106, 107]. 

Due to a lack of studies, the sample size calculations for the medical 
students were based on a proprietary pilot study. The software utilised the 
following settings to calculate the means: Wilcoxon signed-rank test 
(matched pairs) function. The following assumptions were applied: power 
(1 − β error probability) at 0.95 and an α error probability of 0.05. The effect 
size (Cohen dz) from the pilot study was 0.61, based on pre-and post-training 
means and standard deviations (SD) of 4.80 ± 0.49 and 5.07 ± 0.36, respecti-
vely. These values were inputted into the function, resulting in a sample size 
of 33 subjects. The pilot study had an attrition rate of 30%. Therefore, 
accounting for attrition, the total number of subjects required was 48. 

The sample size for lung sounds recordings was calculated based on the 
assumption of the effect size to be 0.50, power (1 − β error probability) at 
0.95 and an α error probability of 0.05, with the number of groups set at 3. 
The G*Power software (ver. 3.1.9.4; Heinrich-Heine-Universität Düsseldorf, 
Düsseldorf, Germany) function was set at ANOVA: fixed effect. The input 
resulted in the value of 85 subjects (including the control). The recording of 
lung sounds had to undergo a double-blind review, assuming that the 
screening group was out of around 30%, which means that around 122 
subjects needed to be enrolled in the study. 

4.3. Study enrolment methodology 

Individuals who agreed to participate in the study were briefed and 
signed the PIF and ICF. During the study, data were collected according to 
the patient survey questionnaire (see Annex 1). All subject data was gathered 
by doctoral student. All subject medical data was coded and accessible only 
to the principal investigator (doctoral student).
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4.4. Pulmonary sound recording 

A 3M™ Littmann® CORE digital stethoscope (3M Company, St Paul, 
Minnesota, United States), Microsoft®, Windows® 10 Operating System 
software (Microsoft Corporation, Redmond, Washington, United States) 
based HP ProBook 450 G4 (HP Inc., Palo Alto, California, United States) 
Intel® Core™ i5 i5-7200U (Intel Corporation, Santa Clara, California, United 
States) laptop was used to store audio files via 3M™ Littmann® StethAssist-
1.3.230 (3M Company, St. Paul, Minnesota, United States) software. 

The auscultation sound recordings were performed over approximately 
three months. The electronic stethoscope settings were as follows: mode was 
set to the diaphragm, and sound amplification was set to level 3 (the implica-
tion is up to level 9). The investigator performed the recordings in the wards, 
usually containing 2 to 4 patients. All patients were in stable condition and 
treated in the department for their underlying disorders. Patients with panc-
reatitis or severe hypertension were primarily the sources for normal lung 
sound recordings. Patients with pathological lung sounds were diagnosed and 
being treated for: Pneumonia, COPD, Asthma, HF, Hydrothorax, CKD. 
When the noise levels rose to hinder auscultation due to reasons such as a 
trolley passing, the nurse entered the room, the lung sound was rerecorded. 
Audio recordings were 15 s long each and stored in a waveform audio file 
format (WAV). Six recordings for each patient were performed from the back 
of the chest (Fig. 4.4.1). 

 
Fig. 4.4.1. Illustration with six sites on the back of the chest  

where the 15 s lung sounds were recorded from  
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4.4. Pulmonary sound recording 
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4.5. Lung sound processing 

In a double-masked review, a team of family and internal medicine 
physicians assessed the quality of the sounds and whether they were normal 
or pathological in nature. The quality of the sound recording was rated: 
“audible” or “inaudible” for training and assessing ML models. The internal 
and family doctors independently had to agree on the sound being “audible” 
and their type and class so that they could be included in the respiratory 
sounds database. Medical specialists reviewed lung sounds using the same 
Sennheiser HD 560S headphones (Sennheiser Electronic GmbH & Co. KG, 
Wedermark, Germany). 

Of the 124 subjects and 744 recordings, only 250 recordings were suit-
able for ML models: 130 recordings for NAS, 70 for CAS and 50 for DAS. 
The sound descriptions and WAV files were securely stored in an encrypted 
Microsoft® Excel® (Microsoft Corporation, Redmond, Washington, United 
States) software database and audio folder, respectively. This database only 
contained essential patient information: age, gender, clinical diagnosis, audio 
file name and lung sound description. The data was held on the Internal Medi-
cine Clinic’s password-locked laptop, ensuring its safety and confidentiality. 

To evaluate medical students and ML models robustness to different 
levels of signal-to-noise ratio (SNR), Gaussian white noise was added to each 
recording according to Samit Ari methodology [108]. The assessment of the 
classification performance can be based on class indices, such as sensitivity, 
specificity and precision, which describes the classification results achieved 
on each modelled class. However, in several situations, it is useful to repre-
sent the global classification performance with a single number. Therefore, 
several measures have been introduced in literature to deal with this diagn-
ostic assessment problem. These metrics have been proposed to generally 
face binary classification tasks and can behave differently depending on the 
classification scenario. In this study, different global measures of classifica-
tion performances are compared by means of results achieved on an extended 
set of real multivariate datasets. The systematic comparison is carried out 
through multivariate analysis. Further investigations are then derived on 
specific indices to understand how the presence of unbalanced classes and the 
number of modelled classes can influence their behaviour. 

Finally, this work introduces a set of benchmark values based on diffe-
rent random classification scenarios. These benchmark thresholds can serve 
as the initial criterion to accept or reject a classification model on the basis of 
its performance according to Samit Ari methodology [108]. 
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The following three levels of GWN levels were used: no GWN, SNR-40 
(medium GWN level at 5 dB) and SNR-20 (high GWN level at 25 dB). The 
SNRs were as follows: no GWN had a signal of approximately 45 dB and 
noise at 0 dB; SNR-40 had a signal of approximately 45 dB and noise at 5 dB; 
and SNR-20 had a signal of approximately 45 dB and noise at 25 dB. The 
GWN was added across the frequency spectrum from 31.25 to 1968.75 Hz. 
Audacity® (Muse Group, Limassol, Cyprus) was used to visualise waveforms 
and spectrograms (Fig. 4.5.1). 

 
Fig. 4.5.1. Flowchart visualisation of GWN levels added to lung sounds. 

Spectrogram (top row) and waveform (bottom row) analysis from one 15 s 
recording. Brighter backgrounds in the spectrogram indicate increasing 
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SNR – signal-to-noise ratio, GWN – Gaussian white noise. 

4.6. Lung sound preparation for training and assessing human subjects 

A website was created with training and examination sections for the 
MFS subjects and this platform had been successfully utilised in previous 
pilot study [109]. The training section of the website featured a pictogram of 
a chest with six clickable points, allowing students to listen to lung sounds, 
effectively creating web-based virtual simulated patients (Fig. 4.6.1). The 
information presented to the students was anonymised; only the patient’s age 
and gender were included, along with details regarding the lung sound. The 
training section contained 101 lung sound recordings, of which 54% were 
DAS and CAS. The examination section was randomised and included 54 
sound recordings, comprising equal proportions of NAS, CAS and DAS 
classes of lung sounds. Prior to the pilot study, the website was tested with 
15 students to assess its functionality during a dry run and to collect data for 
sample size calculation. A pulmonologist reviewed the website. Enrolment 
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enrolment criteria and provided informed consent. After 4 days of training 
subjects were assessed for ability to correctly identify NAS, CAS, DAS via 3 
exams, each having different levels of GWN (no GWN, GWN at SNR-40, 
GWN at SNR-20). 

 
Fig. 4.6.1. General website layout 

4.7. Lung sound preparation for training and assessing  
machine learning models 

The sound files were converted to spectrograms and scalograms. Featu-
res were extracted at 3-second intervals from spectrograms and scalograms 
(the approximate average expiration/inspiration time ratios being 1.0 and 3.4, 
respectively) [110]. The following features were extracted from each of 250 
recordings: average value of scalogram coefficients (mean), variability of 
scalogram coefficients (standard deviation), tailedness of the distribution of 
coefficients (kurtosis), asymmetry of the distribution of coefficients (skew-
ness), central value of scalogram coefficients (median), most frequently 
occurring value in the coefficients (mode), smallest coefficient value (mini-
mum) and most considerable coefficient value (maximum). The 450 extrac-
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ted features each 15 s recording. Then, the each of 250 legers were catego-
rised with a class label columns (NAS, CAS or DAS) and saved to a comma-
separated values (CSV) file ready to be fed into ML models. 

4.8. Machine learning models 

A total of 12 supervised learning ML models were used: AdaBoost, 
CatBoost, ET, GB, Histgradient, K-NN, LightGBM, LR, MLP, RF, SVM, 
XGBoost. The models were chosen due to their potential and being previous-
ly used in researches related to lung sounds or other auditory bio signals 
recognition along with their ability to be applied to smaller datasets. 

The models were trained using methodology that utilises extracted 
features from scalograms and spectrograms [111]. 

The models selection ranged from simplest such as K-NN to more 
sophisticated models such as XGBoost classifier. The K-NN is instance-
based learning model that uses a nonparametric classification algorithm and 
is relatively efficient with small datasets. Another model that held a great 
potential was SVM because in past research it done well with small datasets 
that have more features than cases, as in our project that has 250 lung sounds 
with 450 features. The SVM model also shows robustness. LR is a classical 
statistical method that uses a linear model to predict binary classes. RF uses 
multiple decision trees during training. It also shows excellent robustness. 
More sophisticated models such as XGBoost and Histgradient implements 
gradient boosting parameters to improve performance over models such as 
RF regarding model accuracy. This model uses non-linear relations in 
modelling and has the potential to identify more subtle differences in lung 
sounds this could assist the model in making the correct predictions. 

4.9. Hardware utilised for training and  
assessing machine learning models 

A custom-built PC running Windows® 10 operating system (Microsoft 
Corporation, Redmond, WA, USA) was used, equipped with an Intel® Core™ 
i7-12700K processor, 64 GB of RAM, and an NVIDIA GeForce RTX 3060 
graphics card with 12 GB of VRAM (NVIDIA Corporation, Santa Clara, CA, 
USA). 
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4.10. Model training and testing 

GWN was added using Anaconda® (Austin, TX, USA) with Jupyter 
Notebook 6.4.7 utilising Python packages for machine learning training and 
assessment. Audio features were extracted using the Python library on to a 
comma-separated values (CSV). Lung sounds were labelled in double-blind 
setting. The datasets were split into 80/20 ratio for training and testing [112]. 

The split data contained even proportional number of NAS, CAS, DAS 
lung sounds at three different levels of GWN (no GWN, SNR-40, SNR-20). 
During cross-validation, the training data were partitioned into nine folds to 
ensure a similar distribution of the target classes in each fold and to improve 
the ML models. Due to class imbalance, stratification of the dataset was 
critical to ensure that each block of data contained representatives from each 
category [113]. The performance metric for each fold was collected and aver-
aged at the end to provide the best evaluation of the model’s performance. 

In total, 30 iterations (runs) were performed for each model, including 
handling class imbalance, performing cross-validation, training the models, 
and calculating the performance metrics [114]. Once the best model was 
selected out of the 24 potential variations (12 ML models based on spectro-
grams and 12 based on scalograms), the model was fine-tuned again and 45 
runs were performed, for average MMC calculations.  

4.11. Performance metrics 

The following performance markers were used to assess the validity of 
the models. Particular importance on ROC-AUC, PR-AUC, MCC, F1-score, 
TP, TN, as the study examined the best ML models’ diagnostic validity. 

True positive (TP): is a measure of classification of adventitious sound 
identified in patients with true adventitious lung sounds. False positive (FP) 
measures the classification of normal lung sounds as adventitious lung 
sounds. True negative (TN) measures the classification of normal sounds as 
normal, and false negative (FN) states adventitious sounds as normal. 

Sensitivity (Sens), also known as recall, is a measure of the ability of the 
model to correctly detect positive cases of pathological lung sounds. 

 [115] 
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Specificity (Spec), is the measure of the model’s ability to identify a 
negative test result given that lung sounds correctly are normal. 

 [116] 
False positive rate (FPR) is the opposite of specificity: 

 [117] 
ROC-AUC: measures the overall performance of a model to classify lung 

sounds as normal or pathological. This is a robust measure, relying on all 
possible classification thresholds. The ideal classifier would produce a point 
in the top-left corner of the ROC space, indicating maximum sensitivity and 
specificity (minimal false positive rate). In contrast, a random classifier 
would generate points along the diagonal of the ROC space, extending from 
the bottom-left to the top-right corner [118]. The AUC can be approximated 
by summing up the areas of the trapezoids formed between points on the 
receiver operating characteristic (ROC) curve: 

 [119, 120] 

Accuracy (Acc), is a measure of the overall correctness of the model by 
calculating the proportion of correct predictions (both true positives and true 
negatives) out of all predictions. This is a good measure if classes are 
balanced. Though if dataset suffers from imbalance MCC is preferred [118]. 

 [121] 
Positive predictive value (PPV) also called precision, is a measure of the 

correct positive predictions: 

 [122] 
F1-score – measures the harmonic mean of precision (PPV) and recall 

(sensitivity). This measurement is widely use in machine learning and is 
especially useful when trying to understand models diagnostic accuracy 
trained and assessed on imbalanced datasets. 
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Cohen’s Kappa is a statistical measure designed to evaluate the level of 
agreement between two evaluators or classifiers, adjusting for the possibility 
of agreement due to random chance. It is commonly employed in classi-
fication tasks to gauge model performance, particularly in cases involving 
imbalanced datasets. 

 
where: ! – Cohen’s Kappa; 

Po – is the proportion of instances where the evaluators agree; 
Pe – the proportion of agreement expected by chance [124].  

Matthews correlation coefficient (MCC) was mainly used in binary 
classifications, but it has been adapted in multivariant studies too. It is another 
excellent measurement for use when datasets are imbalanced. It incorporates 
TN, TP, FP, FN in calculations and gives values ranging from –1 to 1. The 
interpretation of MCC values is provided bellow, as adapted from Natarjan 
Meghanathan article [125]. 

Table 4.11.1. MCC Value interpretation 
MCC value Interpretation 
0.80 to 1.0 Very strong positive (model almost always has correct prediction) 
0.60 to 0.79 Strong positive 
0.40 to 0.59 Moderate positive 
0.20 to 0.39 Weak positive 
0.00 to 0.19 No better than random guessing 

–0.19 to –0.01 Very weak negative 
–0.39 to –0.20 Poor classification 
–0.59 to –0.40 Moderate negative 
–0.79 to –0.60 Strong negative 
–1.00 to –0.80 Very strong negative (model predicts completely opposite direction 

from expected results) 

MCC – Matthews correlation coefficient. 

  

1 – Pe
Po – Peκ = 

36 
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Cohen’s Kappa is a statistical measure designed to evaluate the level of 
agreement between two evaluators or classifiers, adjusting for the possibility 
of agreement due to random chance. It is commonly employed in classi-
fication tasks to gauge model performance, particularly in cases involving 
imbalanced datasets. 

 
where: ! – Cohen’s Kappa; 

Po – is the proportion of instances where the evaluators agree; 
Pe – the proportion of agreement expected by chance [124].  

Matthews correlation coefficient (MCC) was mainly used in binary 
classifications, but it has been adapted in multivariant studies too. It is another 
excellent measurement for use when datasets are imbalanced. It incorporates 
TN, TP, FP, FN in calculations and gives values ranging from –1 to 1. The 
interpretation of MCC values is provided bellow, as adapted from Natarjan 
Meghanathan article [125]. 

Table 4.11.1. MCC Value interpretation 
MCC value Interpretation 
0.80 to 1.0 Very strong positive (model almost always has correct prediction) 
0.60 to 0.79 Strong positive 
0.40 to 0.59 Moderate positive 
0.20 to 0.39 Weak positive 
0.00 to 0.19 No better than random guessing 

–0.19 to –0.01 Very weak negative 
–0.39 to –0.20 Poor classification 
–0.59 to –0.40 Moderate negative 
–0.79 to –0.60 Strong negative 
–1.00 to –0.80 Very strong negative (model predicts completely opposite direction 

from expected results) 

MCC – Matthews correlation coefficient. 

  

1 – Pe
Po – Peκ = 



3838 

4.12. Statistical analysis 

The data for ML models and LSMU medical students were analysed 
using a Microsoft® Excel® (Microsoft Corporation, Redmond, Washington, 
United States) spreadsheet and the JASP (ver. 0.18.3; Jeffreys’ Amazing 
Statistics Programme, The Jamovi project, Sydney, Australia) statistical 
package [126]. Additionally, IBM® SPSS® ver. 29 (IBM Inc., Armonk, New 
York, United States) was also utilised to complement analysis via JASP. A 
P-value of 0.05 or below was considered statistically significant. The results 
were presented in tables and summarised in a box-and-whisker plot. 

During data cleaning, seven subjects were excluded from further statisti-
cal analysis for not completing all three assessments. Therefore, statistical 
analysis was performed on 45 out of 52 subjects. 

The results did not adhere to a normal distribution; therefore, nonpara-
metric tests were used for further analysis of median values. The Wilcoxon 
rank-sum test assessed the effect of training on students’ ability to discern 
lung sounds accurately, whilst Friedman’s test was used to analyse the impact 
of the three GWN levels on different lung sound classes with two degrees of 
freedom. Finally, a post hoc comparison was performed to evaluate the ability 
of medical students to recognise the lung sound classes (NAS, CAS and DAS) 
separately under the three different levels of GWN. 

For human subjects naïve second- and third-year medical students were 
used.  The data was collected from a proprietary website on which students 
were trained and assessed using MongoDB® (MongoDB, Inc., New York 
City, NY, USA) software along with entering it into a Microsoft® Excel® 
(Microsoft Corporation, Redmond, Washington, United States) spreadsheet 
for statistical analysis.  

The ML model performance was recorded utilising Anaconda® (Austin, 
TX, USA) with Jupyter Notebook 6.4.7 utilising Python packages for machine 
learning training together with assessment and saved in comma-separated 
value (CSV) format. 

For comparison of machine learning tools Friedman test was applied with 
post hoc pairwise comparison to compare the diagnostic accuracy of 24 
different variations of ML models. To compare 12 spectrogram and 12 scalo-
gram based ML models Wilcoxon signed-rank test was used. 

Finally, Friedman test was applied with post hoc pairwise comparison to 
compare best ML model and medical students scores.  
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5. RESULTS 

5.1. Descriptive statistics 

Table 5.1.1. Descriptives showing lung sounds population  
Adventitious 
lung sounds Female Female Age 

(SD) Males Male age 
(SD) Overall Overall age 

(SD) 
NAS 26 69.5 (16.9) 26 56.5 (18.6) 52 63.0 (18.0) 
CAS 10 75.5 (8.4) 13 66.0 (12.2) 23 70.1 (11.5) 
DAS 12 78.7 (12.3) 21 69.0 (11.7) 33 72.5 (12.7) 
Overall 48 73.1 (14.7) 60 62.9 (16.0) 108 67.4 (16.2) 

SD – standard deviation. 

Table 5.1.2. Descriptive analysis by gender and age of medical students 

Female Female Age 
(SD) Males Male age 

(SD) Overall Overall age  
(SD) 

32 21.9 (2.4) 13 21.6 (3.1) 45 21.8 (2.6) 
SD – standard deviation. 

5.2. ML model performance 

In total, 24 machine models’ variations were tested with spectrogram and 
scalogram visualisations, under three levels of GWN noise (no added noise, 
GWN SNR-40 and GWN SNR-20). The impact of GWN was monitored on 
three main classes of lung sounds: NAS, CAS, DAS.  

To display and comprehend performance of ML model, three main 
methods were used: confusion matrix, PR-AUC, ROC-AUC. The models 
were tested for overall impact of GWN on their performance via Friedman 
test.  

From Fig. 5.2.1, the impact of Gaussian white noise is clearly observed 
in true positive (TP), true negative (TN), false positive (FP), and false nega-
tive (FP), as seen in the Confusion matrix of spectrogram based AdaBoost 
model. At no GWN added levels, 47/70 CAS are identified correctly, 25/50 
of DAS class is correctly identified, and 96 of 130 are correctly identified. 
The confusion matrix at SNR-40 shows a sharp decrease in the performance 
of spectrogram-based AdaBoost models’ performance with only 3/70 CAS 
correctly identified, the slightly more significant number of DAS correctly 
identified 27/50 and 110/130 of NAS correctly identified. The drop in values 
at the GWN SNR-20 level for DAS with 0/50 was identified correctly, and 
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CAS showed abysmal performance compared to no GWN at 6/70. 
Meanwhile, NAS class sounds improved, with 120/130 being correctly 
identified. Though the prior statement is true, we can see that the model has 
a tendency to label all three classes of lung sounds as NAS at GWN SNR-20, 
showing serious issues with the correct classification at higher levels of 
ambient noise. 

 
Fig. 5.2.1. Confusion metrics showing significant impact (P = 0.000)  
of GWN on AdaBoost models’ ability to identify lung sounds correctly  

(from top to bottom) 
GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound, AdaBoost – Adaptive Boosting. 
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CAS showed abysmal performance compared to no GWN at 6/70. 
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Fig. 5.2.2. PR curve showing significant impact (P = 0.000) of GWN  

on AdaBoost models’ ability to identify lung sounds correctly  
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound, AdaBoost – Adaptive Boosting.  

From Fig. 5.2.2, it can be observed that spectrogram-based AdaBoost 
struggles to achieve good precision to recall values for all classes, but the 
DAS class performance is significantly worse with much lower PR-AUC out 
of the three. At medium levels of GWN (SNR-40), the NAS and CAS lung 
sound classes identification are impacted, as exemplified by a drop in 
precision compared to recall and lower PR-AUC. However, DAS class has 
not been negatively impacted. Finally, once GWN is increased to SNR-20 
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levels, all three classes of lung sounds are heavily and negatively impacted. 
DAS class sound identification bears the biggest brunt of the impact, and 
precision compared to recall rates drops off into an abyss. Therefore, the 
model shows overall poor precision to recall performance with limited 
robustness even at medium levels of GWN. 

 
Fig. 5.2.3. ROC curve showing significant impact (P = 0.000) of GWN 

on AdaBoost models’ ability to identify lung sounds correctly  
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS- continuous auscul-
tated sound, DAS – discontinuous auscultated sound, AdaBoost – Adaptive Boosting.  
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levels, all three classes of lung sounds are heavily and negatively impacted. 
DAS class sound identification bears the biggest brunt of the impact, and 
precision compared to recall rates drops off into an abyss. Therefore, the 
model shows overall poor precision to recall performance with limited 
robustness even at medium levels of GWN. 

 
Fig. 5.2.3. ROC curve showing significant impact (P = 0.000) of GWN 

on AdaBoost models’ ability to identify lung sounds correctly  
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS- continuous auscul-
tated sound, DAS – discontinuous auscultated sound, AdaBoost – Adaptive Boosting.  
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From Fig. 5.2.3, the impact of Gaussian white noise (GWN) levels on the 
actual positive rate (TPR) compared to the false positive rate (FPR) in the ROC 
curve can be observed for the spectrogram-based (Adaptive Boosting) 
AdaBoost model. At no GWN added level, the model shows strong perfor-
mance, especially for CAS and DAS classes of sounds, with weaker perfor-
mance for NAS class, as seen from the ROC area under the curve (AUC) 
scores. However, once the levels of GWN are increased to SNR-40, the lines 
for all three classes start to separate out as with CAS and NAS classes, TPR 
reducing significantly compared to FPR, but with DAS sounds maintaining 
relatively high ROC-AUC (area) score. Finally, once GWN at SNR-20 is added 
to all three classes of lung sounds, AdaBoost, a distinct separation between all 
three classes of lung sounds appears with DAS identification performance as 
the best, followed by DAS and then NAS and shown by ROC-AUC values. 

From Fig. 5.2.4, the impact of Gaussian white noise is clearly observed 
on true positive (TP), true negative (TN), false positive (FP) and false nega-
tive (FP), as seen in the Categorical data Gradient Boosting (CatBoost) 
confusion matrix. At no GWN added levels, 47/70 CAS are identified 
correctly, 25/50 of DAS class is correctly identified, and 96 of 130 are 
correctly identified. The confusion matrix at SNR-40 shows a sharp decrease 
in the performance of spectrogram-based CatBoost ML model, with only 3/70 
CAS correctly identified and a slightly more significant number of DAS 
correctly identified at 27/50 and 110/130 of NAS correctly identified. The 
drop in values at the GWN SNR-20 level for DAS with 0/50 was identified 
correctly, and CAS showed almost abysmal performance at 6/70. Meanwhile, 
NAS class sounds see even improvement, with 120/130 being correctly 
identified. Though the prior statement is true, we can see that the model has 
a tendency to label all three classes of lung sounds as NAS at GWN SNR-20, 
showing serious issues with the correct classification. 
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Fig. 5.2.4. Confusion metrics showing significant impact (P = 0.000)  
of GWN on CatBoost models’ ability to identify lung sounds correctly  

(from top to bottom) 
GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound, CatBoost – Categorical Boosting. 

From Fig. 5.2.5, it can be observed that spectrogram-based Categorical 
Boosting (CatBoost) achieves relatively good levels of precision compared 
to recall for CAS, NAS class of sounds with slightly lower levels for DAS 
class as exemplified via precision to recall area under the curve (PR-AUC) 
values. At medium levels of GWN of SNR-40, the DAS and CAS lung sound 
identification are impacted by reduced PR-AUC, but the impact on NAS 
sounds is more limited. Finally, once GWN is increased to SNR-20 levels, all 
three classes of lung sounds are heavily and negatively impacted, with CAS 
and DAS class sound identification bearing the biggest brunt on the impact, 
precision compared to recall rates drop off into an abyss. The spectrogram-
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based CatBoost model at no GWN added level shows relatively good perfor-
mance, but with a caveat that this performance depends on the sound class, 
and shows limited robustness even to medium levels of GWN. 

 
Fig. 5.2.5. PR curve showing significant impact (P = 0.000) of GWN on 

CatBoost models’ ability to identify lung sounds (from top to bottom) 
GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound, CatBoost – Categorical Boosting. 
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based CatBoost model at no GWN added level shows relatively good perfor-
mance, but with a caveat that this performance depends on the sound class, 
and shows limited robustness even to medium levels of GWN. 

 
Fig. 5.2.5. PR curve showing significant impact (P = 0.000) of GWN on 

CatBoost models’ ability to identify lung sounds (from top to bottom) 
GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound, CatBoost – Categorical Boosting. 
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Fig. 5.2.6. ROC curve showing significant impact (P = 0.000) of GWN  

on CatBoost models’ ability to identify lung sounds correctly  
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound, CatBoost – Categorical Boosting. 

From Fig. 5.2.6, the impact of Gaussian white noise (GWN) levels on the 
true positive rate (TPR) as compared to the false positive rate (FPR) in the 
receiver operating characteristic (ROC) graph can be observed for the 
spectrogram-based Categorical Boosting (CatBoost) model. At no GWN 
added level, the model shows strong performance, especially for CAS and 
DAS classes of sounds, with slightly weaker performance for the NAS class, 
as seen from the ROC area under the curve (AUC) scores. However, once the 
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levels of GWN are increased to SNR-40, the lines for all three classes are 
impacted, with CAS and NAS class’s TPR as compared to FPR being the 
lowest but with DAS sounds maintaining a relatively high ROC-AUC (area) 
score. Finally, once GWN at SNR-20 is added to all three classes of lung 
sounds, a distinct separation between all three classes of lung sounds appears. 
The CAS and NAS identification performance being the lowest, with the most 
excellent robustness shown by the DAS class, none of the less DAS and NAS 
classes are pretty much weaving around the random line (dashed line). 
Therefore, according to ROC-AUC values, the model is unfunctional as a 
diagnostic tool at the highest GWN levels. 

 
Fig. 5.2.7. Confusion metrics showing significant impact (P = 0.000) of 

GWN on Extra Tree models’ ability to identify lung sounds correctly  
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous 
auscultated sound, DAS – discontinuous auscultated sound. 
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levels of GWN are increased to SNR-40, the lines for all three classes are 
impacted, with CAS and NAS class’s TPR as compared to FPR being the 
lowest but with DAS sounds maintaining a relatively high ROC-AUC (area) 
score. Finally, once GWN at SNR-20 is added to all three classes of lung 
sounds, a distinct separation between all three classes of lung sounds appears. 
The CAS and NAS identification performance being the lowest, with the most 
excellent robustness shown by the DAS class, none of the less DAS and NAS 
classes are pretty much weaving around the random line (dashed line). 
Therefore, according to ROC-AUC values, the model is unfunctional as a 
diagnostic tool at the highest GWN levels. 

 
Fig. 5.2.7. Confusion metrics showing significant impact (P = 0.000) of 

GWN on Extra Tree models’ ability to identify lung sounds correctly  
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous 
auscultated sound, DAS – discontinuous auscultated sound. 
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levels of GWN are increased to SNR-40, the lines for all three classes are 
impacted, with CAS and NAS class’s TPR as compared to FPR being the 
lowest but with DAS sounds maintaining a relatively high ROC-AUC (area) 
score. Finally, once GWN at SNR-20 is added to all three classes of lung 
sounds, a distinct separation between all three classes of lung sounds appears. 
The CAS and NAS identification performance being the lowest, with the most 
excellent robustness shown by the DAS class, none of the less DAS and NAS 
classes are pretty much weaving around the random line (dashed line). 
Therefore, according to ROC-AUC values, the model is unfunctional as a 
diagnostic tool at the highest GWN levels. 

 
Fig. 5.2.7. Confusion metrics showing significant impact (P = 0.000) of 

GWN on Extra Tree models’ ability to identify lung sounds correctly  
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous 
auscultated sound, DAS – discontinuous auscultated sound. 
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From Fig. 5.2.7, the impact of Gaussian white noise is observed on true 
positive (TP), true negative (TN), false positive (FP) and false negative (FP) 
as seen in the spectrogram-based Extra Trees’ confusion matrix table. At no 
GWN added levels, 40/70 CAS was identified correctly, only 13/50 of the 
DAS class was correctly identified, and 103/130 of the NAS were correctly 
identified. The confusion matrix at SNR-40 shows a sharp decrease in the 
performance of the model performance with a sharp drop in TP for the CAS 
class, with only 4/70 correctly identified, the slightly more significant number 
of DAS correctly identified at 9/50, and 123/130 of NAS correctly identified. 
The values dropped at the GWN SNR-20 level, for DAS and CAS showed 
extremely poor performance, with 0/50 and 1/70 identified correctly, respec-
tively. Meanwhile, NAS class sounds improved, with 128/130 correctly iden-
tified. 

Though the prior statement is accurate, we can see that the model has a 
tendency to label all three classes of lung sounds as NAS at GWN SNR-20, 
showing serious issues with the correct classification. According to confusion 
matrix TP scores, the spectrogram-based extra tree model shows poor per-
formance even at no GWN levels.  

From Fig. 5.2.8, it can be observed that spectrogram-based Extra Trees 
struggles achieved overall sub-power levels of precision compared to recall. 
The NAS class performed followed by CAS and DAS as exemplified via 
precision to recall area under the curve (PR-AUC) values. At medium levels 
of GWN of SNR-40, all three classes were impacted, but the CAS class was 
the most significantly impacted, as seen with dropping precision compared to 
the recall curve and reduced PR-AUC values. Finally, once GWN is increased 
to SNR-20 levels, all three classes of lung sounds are heavily and negatively 
impacted, with DAS class sound identification bearing the biggest brunt of 
the impact, precision compared to recall rates drop off into an abyss for 
spectrogram-based Extra Trees ML model. 
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levels of GWN are increased to SNR-40, the lines for all three classes are 
impacted, with CAS and NAS class’s TPR as compared to FPR being the 
lowest but with DAS sounds maintaining a relatively high ROC-AUC (area) 
score. Finally, once GWN at SNR-20 is added to all three classes of lung 
sounds, a distinct separation between all three classes of lung sounds appears. 
The CAS and NAS identification performance being the lowest, with the most 
excellent robustness shown by the DAS class, none of the less DAS and NAS 
classes are pretty much weaving around the random line (dashed line). 
Therefore, according to ROC-AUC values, the model is unfunctional as a 
diagnostic tool at the highest GWN levels. 

 
Fig. 5.2.7. Confusion metrics showing significant impact (P = 0.000) of 

GWN on Extra Tree models’ ability to identify lung sounds correctly  
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous 
auscultated sound, DAS – discontinuous auscultated sound. 
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Fig. 5.2.8. PR curve showing significant impact (P = 0.000) of GWN on 

Extra Tree models’ ability to identify lung sounds correctly  
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous 
auscultated sound, DAS – discontinuous auscultated sound. 
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Fig. 5.2.8. PR curve showing significant impact (P = 0.000) of GWN on 

Extra Tree models’ ability to identify lung sounds correctly  
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous 
auscultated sound, DAS – discontinuous auscultated sound. 
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Fig. 5.2.9. ROC curve showing significant impact (P = 0.000) of GWN on 

Extra Tree models’ ability to identify lung sounds correctly  
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous 
auscultated sound, DAS – discontinuous auscultated sound. 
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for all three classes is negative. Especially for CAS and NAS classes, but with 
DAS sounds maintaining relatively as seen from the ROC area under the 
curve (ROC-AUC) scores. Finally, once GWN at SNR-20 is added to all three 
classes of lung sounds, a distinct separation between all three classes of lung 
sounds appears, with CAS and NAS identification performance being the 
lowest, with the greatest robustness shown by DAS class, none of the less 
DAS and NAS classes are pretty much weaving around the random line 
(dashed line). Therefore, according to ROC-AUC values, the model is 
unfunctional as a diagnostic tool at the highest GWN levels. 

 
Fig. 5.2.10. Confusion metrics showing significant impact (P = 0.000) of 

GWN on Gradient Boosting models’ ability to identify lung sounds correctly 
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound. 
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for all three classes is negative. Especially for CAS and NAS classes, but with 
DAS sounds maintaining relatively as seen from the ROC area under the 
curve (ROC-AUC) scores. Finally, once GWN at SNR-20 is added to all three 
classes of lung sounds, a distinct separation between all three classes of lung 
sounds appears, with CAS and NAS identification performance being the 
lowest, with the greatest robustness shown by DAS class, none of the less 
DAS and NAS classes are pretty much weaving around the random line 
(dashed line). Therefore, according to ROC-AUC values, the model is 
unfunctional as a diagnostic tool at the highest GWN levels. 

 
Fig. 5.2.10. Confusion metrics showing significant impact (P = 0.000) of 

GWN on Gradient Boosting models’ ability to identify lung sounds correctly 
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound. 
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From Fig. 5.2.10, the impact of Gaussian white noise (GWN) is clearly 
observed on true positive (TP), true negative (TN), false positive (FP) and 
false negative (FP) as seen in the spectrogram-based Gradient Boosting 
confusion matrix. At no GWN added levels, 52/70 CAS was identified 
correctly, only 26/50 of the DAS class was correctly identified, and 94/130 
of the NAS were correctly identified. The confusion matrix at SNR-40 
(medium levels) shows a sharp decrease in performance of the model perfor-
mance with a sharp drop in TP for the CAS class, with only 20/70 correctly 
identified, whilst maintaining performance for DAS and NAS with 25/50 
97/130 scores, respectively. The TP scores dropped at the GWN SNR-20 
level for NAS and DAS class identification, showing abysmal performance: 
5/130 and 0/50 were identified correctly, respectively. 

Meanwhile, CAS class sounds see even improvement, with 68/69 being 
correctly identified. Though the prior statement is accurate, we can see that 
the model tends to label all three classes of lung sounds as CAS at GWN 
SNR-20, showing serious issues with the correct classification. The Gradient 
Boosting ML model shows an overall reasonable performance according to 
confusion matrix scores, especially for CAS and NAS sounds, but with poor 
performance for the DAS class, especially with high levels of GWN. 

From Fig. 5.2.11, it can be observed that spectrogram-based Gradient 
Boosting model achieves a reasonable precision performance compared to 
recall for CAS, NAS class of sounds with lower diagnostic levels for DAS 
classes exemplified via precision to recall area under the curve (PR-AUC) 
values. At medium levels of GWN of SNR-40, the NAS, DAS, and especially 
CAS lung sound identifications are impacted by reduced PR-AUC, but the 
impact on NAS sounds is more limited. Finally, once GWN is increased to 
SNR-20 levels, all three classes of lung sounds drop down as compared to no 
GWN-added levels, and this statement is especially true for CAS and DAS 
classes. Therefore, the spectrogram based gradient boosting models accor-
ding to PR-AUC values reasonable performance for two classes, but with 
worse performing DAS class at no GWN-added levels and limited robustness 
to GWN even at GWN SNR-40 levels. 
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Fig. 5.2.11. PR curve showing significant impact (P = 0.000) of GWN on 

gradient boosting models’ ability to identify lung sounds correctly  
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound. 

Pr
ec

is
io

ns

1.0

Spectrogram precision-recall curve – 
Gradient Boosting (no GWN)

Spectrogram precision-recall curve – 
Gradient Boosting (GWN SNR-40)

Pr
ec

is
io

ns

Pr
ec

is
io

ns

Recall Recall

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0
1.0 1.00.0 0.00.2 0.20.4 0.40.6 0.60.8 0.8

 Spectrogram PR curve (class CAS) (area = 0.791)
 Spectrogram PR curve (class DAS) (area = 0.668)
 Spectrogram PR curve (class NAS) (area = 0.788)

 Spectrogram PR curve (class CAS) (area = 0.328)
 Spectrogram PR curve (class DAS) (area = 0.720)
 Spectrogram PR curve (class NAS) (area = 0.661)

Spectrogram precision-recall curve – 
Gradient Boosting (GWN SNR-20)

Recall

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8

 Spectrogram PR curve (class CAS) (area = 0.246)
 Spectrogram PR curve (class DAS) (area = 0.176)
 Spectrogram PR curve (class NAS) (area = 0.576)

Pr
ec

is
io

ns

1.0

Spectrogram precision-recall curve – 
Gradient Boosting (no GWN)

Spectrogram precision-recall curve – 
Gradient Boosting (GWN SNR-40)

Pr
ec

is
io

ns

Pr
ec

is
io

ns

Recall Recall

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0
1.0 1.00.0 0.00.2 0.20.4 0.40.6 0.60.8 0.8

 Spectrogram PR curve (class CAS) (area = 0.791)
 Spectrogram PR curve (class DAS) (area = 0.668)
 Spectrogram PR curve (class NAS) (area = 0.788)

 Spectrogram PR curve (class CAS) (area = 0.328)
 Spectrogram PR curve (class DAS) (area = 0.720)
 Spectrogram PR curve (class NAS) (area = 0.661)

Spectrogram precision-recall curve – 
Gradient Boosting (GWN SNR-20)

Recall

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8

 Spectrogram PR curve (class CAS) (area = 0.246)
 Spectrogram PR curve (class DAS) (area = 0.176)
 Spectrogram PR curve (class NAS) (area = 0.576)



5555 

 
Fig. 5.2.12. ROC curve showing significant impact (P = 0.000) of GWN  
on Gradient Boosting models’ ability to identify lung sounds correctly  

(from top to bottom) 
GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound. 

From Fig. 5.2.12, the impact of Gaussian white noise (GWN) levels on 
the true positive rate (TPR) as compared to the false positive rate (FPR) in 
the receiver operating characteristic (ROC) graph can be observed for the 
spectrogram-based Gradient Boosting model. At no GWN added level, the 
model shows strong performance, especially for CAS and DAS classes of 
sounds, with slightly weaker performance for the NAS class as seen from the 
ROC area under the curve (ROC-AUC) scores. However, once the levels of 
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GWN are increased to SNR-40, the curves for all three classes are impacted 
negatively, with CAS and NAS classes TRP being the lowest, but with DAS 
sound class maintaining a relatively high ROC-AUC (area) score. Finally, 
once GWN at SNR-20 is added to all three classes the ML model performs 
poorly, especially for identification of CAS class sound. Therefore, the 
spectrogram-based Gradient Boosting model shows good performance at no 
GWN added levels, but lacks robustness with a great drop of performance at 
medium levels of GWN. The model’s ability to identify true positives for 
CAS and NAS are extremely poor and this is especially true for all three 
sound classes at GWN SNR-20 levels. 

 
Fig. 5.2.13. Confusion metrics showing significant impact (P = 0.000)  

of GWN on Histgradient models’ ability to identify lung  
sounds correctly (from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound. 
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GWN are increased to SNR-40, the curves for all three classes are impacted 
negatively, with CAS and NAS classes TRP being the lowest, but with DAS 
sound class maintaining a relatively high ROC-AUC (area) score. Finally, 
once GWN at SNR-20 is added to all three classes the ML model performs 
poorly, especially for identification of CAS class sound. Therefore, the 
spectrogram-based Gradient Boosting model shows good performance at no 
GWN added levels, but lacks robustness with a great drop of performance at 
medium levels of GWN. The model’s ability to identify true positives for 
CAS and NAS are extremely poor and this is especially true for all three 
sound classes at GWN SNR-20 levels. 

 
Fig. 5.2.13. Confusion metrics showing significant impact (P = 0.000)  

of GWN on Histgradient models’ ability to identify lung  
sounds correctly (from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound. 
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GWN are increased to SNR-40, the curves for all three classes are impacted 
negatively, with CAS and NAS classes TRP being the lowest, but with DAS 
sound class maintaining a relatively high ROC-AUC (area) score. Finally, 
once GWN at SNR-20 is added to all three classes the ML model performs 
poorly, especially for identification of CAS class sound. Therefore, the 
spectrogram-based Gradient Boosting model shows good performance at no 
GWN added levels, but lacks robustness with a great drop of performance at 
medium levels of GWN. The model’s ability to identify true positives for 
CAS and NAS are extremely poor and this is especially true for all three 
sound classes at GWN SNR-20 levels. 

 
Fig. 5.2.13. Confusion metrics showing significant impact (P = 0.000)  

of GWN on Histgradient models’ ability to identify lung  
sounds correctly (from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound. 
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From Fig. 5.2.13, the impact of Gaussian white noise (GWN) is clearly 
observed on true positive (TP), true negative (TN), false positive (FP) and 
false negative (FP) as seen in the spectrogram-based Histgradient ML 
models’ confusion matrix. At no GWN added levels, 52/70 CAS was 
identified correctly, only 26/50 of the DAS class was correctly identified, and 
106/130 of the NAS were correctly identified. The confusion matrix at SNR-
40 (medium levels) shows a sharp decrease in performance with a drop in TP 
for the CAS class with only 15/70 correctly identified, whilst maintaining 
very strong performance for DAS and NAS with 40/50 and 108/130 correctly 
identified, respectively. This robustness continued with GWN level SNR-20, 
not impacting any of the three classes any further. The Histgradient model 
shows overall good performance according to TP scores in the confusion 
matrix table, especially for DAS and NAS sounds. Though, stable but poorer 
performance for CAS class with GWN at SNR-40 and SNR-20 levels. 
Additionally, the model showed reasonably good resilience to GWN. 

Fig. 5.2.14 shows that spectrogram-based Histgradient ML model 
achieves good precision performance compared to recall for CAS, NAS class 
of sounds with lower diagnostic levels for DAS class as exemplified via 
precision to recall area under the curve (PR-AUC) values. At medium levels 
of GWN of SNR-40, the NAS, CAS, and out of the two, especially CAS lung 
sound identification, are impacted, as shown by reduced PR-AUC. However, 
the impact on DAS sounds shows robustness. Finally, once GWN is increased 
to SNR-20 levels, all three classes spread out, but the curves drop lower, 
indicating that the ambient noise impacts all classes of lung sounds. However, 
CAS is more negatively affected than DAS and NAS. The spectrogram-based 
Histgradient model shows good precision to recall scores with strong PR-
AUC values at no GWN-added levels. Additionally, robustness of the model 
is resilient up to and including GWN SNR-40 levels with especially good 
performance for DAS class.  

56 

GWN are increased to SNR-40, the curves for all three classes are impacted 
negatively, with CAS and NAS classes TRP being the lowest, but with DAS 
sound class maintaining a relatively high ROC-AUC (area) score. Finally, 
once GWN at SNR-20 is added to all three classes the ML model performs 
poorly, especially for identification of CAS class sound. Therefore, the 
spectrogram-based Gradient Boosting model shows good performance at no 
GWN added levels, but lacks robustness with a great drop of performance at 
medium levels of GWN. The model’s ability to identify true positives for 
CAS and NAS are extremely poor and this is especially true for all three 
sound classes at GWN SNR-20 levels. 

 
Fig. 5.2.13. Confusion metrics showing significant impact (P = 0.000)  

of GWN on Histgradient models’ ability to identify lung  
sounds correctly (from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound. 
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Fig. 5.2.14. PR curve showing significant impact (P=0.000) of GWN on 

Histgradient models’ ability to identify lung sounds correctly 
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound. 
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Fig. 5.2.15. ROC curve showing significant impact (P=0.000) of GWN on 

Histgradient models’ ability to identify lung sounds correctly  
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound. 

Fig. 5.2.15 shows the impact of Gaussian white noise (GWN) levels on the 
true positive rate compared to the false positive rate in the receiver operating 
characteristic (ROC) curve for the spectrogram-based Histgradient ML 
model. At no GWN added level, the model showed a powerful performance, 
especially for DAS and CAS sounds, with slightly weaker (but still strong) 
performance for the NAS class, as seen from ROC area under the curve 
(ROC-AUC) scores. However, once the levels of GWN are increased to SNR-
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40, the curves for two classes are impacted by the ambient noise: The CAS 
and NAS class’s TPR scores drop. However, the rates are still quite good 
compared to other models. Whilst DAS sounds maintain a high ROC-AUC 
score. Finally, once GWN at SNR-20 is added to CAS and NAS classes, 
performance continues to worsen whilst DAS continues to show robustness. 
Nonetheless, at the highest levels of GWN due to the inability of the model 
to correctly predict two out of three classes, the model becomes ineffective. 
The diagnostic effectiveness of the Histgradient model is valid only at no 
GWN added and GWN SNR-40 levels. 

 
Fig. 5.2.16. Confusion metrics showing significant impact (P = 0.000) 

of GWN on K-NN models’ ability to identify lung sounds correctly 
(from top to bottom) 

Note extreme poor performance of this model. GWN – Gaussian white noise, NAS – normal 
auscultated sound, CAS – continuous auscultated sound, DAS – discontinuous auscultated 
sound, K-NN – K-Nearest Neighbors. 

Spectrogram confusion matrix – 
K-NN (no GWN)

Spectrogram confusion matrix – 
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40, the curves for two classes are impacted by the ambient noise: The CAS 
and NAS class’s TPR scores drop. However, the rates are still quite good 
compared to other models. Whilst DAS sounds maintain a high ROC-AUC 
score. Finally, once GWN at SNR-20 is added to CAS and NAS classes, 
performance continues to worsen whilst DAS continues to show robustness. 
Nonetheless, at the highest levels of GWN due to the inability of the model 
to correctly predict two out of three classes, the model becomes ineffective. 
The diagnostic effectiveness of the Histgradient model is valid only at no 
GWN added and GWN SNR-40 levels. 

 
Fig. 5.2.16. Confusion metrics showing significant impact (P = 0.000) 

of GWN on K-NN models’ ability to identify lung sounds correctly 
(from top to bottom) 

Note extreme poor performance of this model. GWN – Gaussian white noise, NAS – normal 
auscultated sound, CAS – continuous auscultated sound, DAS – discontinuous auscultated 
sound, K-NN – K-Nearest Neighbors. 
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Fig. 5.2.16 clearly shows the impact of Gaussian white noise on true 
positive (TP), true negative (TN), false positive (FP), and false negative (FP), 
as seen in the spectrogram-based K-Nearest Neighbors (K-NN) models’ 
confusion matrix. At no GWN added levels, 33/70 CAS was identified 
correctly, with only 17/50 of DAS class correctly identified and 86/130 of 
NAS correctly identified. The confusion matrix at SNR-40 (medium levels) 
shows a sharp decrease in performance of the model performance with a sharp 
drop in TP for the CAS class with only 1/70 correctly identified, whilst 
maintaining very reasonable performance for DAS with 28/50 correctly and 
NAS with 96/130 correctly recognised. The increase in the GWN levels of 
SNR-20 saw a continued significant drop in the models’ performance for 
DAS and CAS class sound identification, with both scoring 0. Only the NAS 
class maintaining a good TP score of 128/130. The spectrogram-based K-NN 
model overall showed very poor performance according to confusion matrix 
across for DAS and CAS sounds, poor robustness to GWN levels and bias 
towards mislabelling sound as NAS at higher GWN levels. 

Fig. 5.2.17 shows spectrogram-based K-Nearest Neighbors (K-NN) ML 
model achieves poor precision performance compared to recall for CAS, 
NAS class of sounds with lower diagnostic levels for DAS class as precision 
to recall area under the curve (PR-AUC) values. At medium levels of GWN 
of SNR-40, the DAS, CAS, and out of the two, the diagnostic performance is 
worse for DAS lung sound class identification, which is impacted with 
reduced PR-AUC, but the impact of GWN of SNR-40 on NAS class is 
minimal. Finally, once GWN is increased to SNR-20 levels, we see an 
extreme impact on the DAS class with limited impact on the CAS and NAS 
sound classes. According to PR graph the spectrogram-based K-NN model 
was useless for predicting three classes under different levels of GWN. 
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Fig. 5.2.17. PR curve showing significant impact (P = 0.000) of GWN 

on K-NN models’ ability to identify lung sounds correctly 
(from top to bottom) 

Note extreme performance of the model. GWN – Gaussian white noise, NAS – normal 
auscultated sound, CAS – continuous auscultated sound, DAS – discontinuous auscultated 
sound, K-NN – K-Nearest Neighbors. 
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Fig. 5.2.17. PR curve showing significant impact (P = 0.000) of GWN 

on K-NN models’ ability to identify lung sounds correctly 
(from top to bottom) 

Note extreme performance of the model. GWN – Gaussian white noise, NAS – normal 
auscultated sound, CAS – continuous auscultated sound, DAS – discontinuous auscultated 
sound, K-NN – K-Nearest Neighbors. 
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Fig. 5.2.18. ROC curve showing significant impact (P = 0.000) of GWN on 

K-NN boosting models’ ability to identify lung sounds correctly 
(from top to bottom). 

Note extreme performance of the model. GWN – Gaussian white noise, NAS – normal 
auscultated sound, CAS – continuous auscultated sound, DAS – discontinuous auscultated 
sound, K-NN – K-Nearest Neighbors. 

From Fig. 5.2.18, the impact of GWN levels on the true positive rate 
(TPR) as compared to the false positive rate (FPR) in the receiver operating 
characteristic (ROC) curve can be observed for the spectrogram-based K-
Nearest Neighbors (K-NN) model. At no Gaussian white noise (GWN) added 
level, the model shows a reasonable performance, especially for CAS and 
DAS classes of sounds, with weaker (but still firm) performance for the NAS 
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class, as seen from the ROC area under the curve (ROC-AUC) scores. 
However, once the levels of GWN are increased to SNR-40, the lines for all 
two classes of TPR are compared to the FPR drops for the CAS and NAS 
classes. As seen from ROC-AUC (area) scores, DAS sounds maintain a 
higher level. Finally, once GWN at SNR-20 is added, all three classes’ true 
positive rates drop significantly, and the machine model becomes completely 
useless. Therefore, the spectrogram-based K-NN model only functions at no 
GWN added levels and shows a lack of robustness even to medium levels of 
GWN. 

 
Fig. 5.2.19. Confusion metrics showing significant impact (P = 0.000)  
of GWN on LightGBM models’ ability to identify lung sounds correctly 

(from top to bottom) 
GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound, LightGBM – Light Gradient Boosting 
Machine.  
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class, as seen from the ROC area under the curve (ROC-AUC) scores. 
However, once the levels of GWN are increased to SNR-40, the lines for all 
two classes of TPR are compared to the FPR drops for the CAS and NAS 
classes. As seen from ROC-AUC (area) scores, DAS sounds maintain a 
higher level. Finally, once GWN at SNR-20 is added, all three classes’ true 
positive rates drop significantly, and the machine model becomes completely 
useless. Therefore, the spectrogram-based K-NN model only functions at no 
GWN added levels and shows a lack of robustness even to medium levels of 
GWN. 

 
Fig. 5.2.19. Confusion metrics showing significant impact (P = 0.000)  
of GWN on LightGBM models’ ability to identify lung sounds correctly 

(from top to bottom) 
GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound, LightGBM – Light Gradient Boosting 
Machine.  
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class, as seen from the ROC area under the curve (ROC-AUC) scores. 
However, once the levels of GWN are increased to SNR-40, the lines for all 
two classes of TPR are compared to the FPR drops for the CAS and NAS 
classes. As seen from ROC-AUC (area) scores, DAS sounds maintain a 
higher level. Finally, once GWN at SNR-20 is added, all three classes’ true 
positive rates drop significantly, and the machine model becomes completely 
useless. Therefore, the spectrogram-based K-NN model only functions at no 
GWN added levels and shows a lack of robustness even to medium levels of 
GWN. 
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From Fig. 5.2.19, the impact of Gaussian white noise is clearly observed 
on true positive (TP), true negative (TN), false positive (FP) and false 
negative (FP), as seen in the spectrogram-based Light Gradient Boosting 
Machine (LightGBM) model’s confusion matrix. At no Gaussian white noise 
(GWN) added levels, TP rates were above average for CAS, DAS and NAS 
with scores of 45/70, 28/50 and 105/130, respectively. The confusion matrix 
at SNR-40 (medium levels of GWN) shows a significantly negative impact 
only on the model’s ability to identify CAS class with a score of 11/70. 
However, once the GWN increased to SNR-20 level, it significantly worse-
ned the model's performance in discriminating between the three classes, with 
DAS being impacted the most. The spectrogram-based LightGBM ML model 
lost its power to discriminate between classes with only 22/70 and 0/50 for 
CAS and DAS, respectively. The score for NAS was 97/130. The spectro-
gram-based model showed a reasonably good overall performance for all 
three classes at no GWN-added levels. However, the model lacked robustness 
and showed great TP score variability depending on GWN levels, as the score 
for CAS was at medium levels, whilst performance drastically worsened for 
recognition of the model at SNR-20 levels. The model's discrimination power 
at the highest levels of GWN got even further impacted, and sounds were 
classed mainly as NAS or CAS. 

From Fig. 5.2.20, it can be observed that the spectrogram-based Light 
Gradient Boosting Machine (LightGBM) achieves good performance of 
precision to recall for CAS, NAS class of sounds with lower diagnostic levels 
for DAS class as exemplified by precision to recall area under the curve (PR-
AUC). At medium levels of Gaussian white noise (GWN) of SNR-40, the 
CAS, NAS and out of the two, the diagnostic performance was worse for CAS 
class identification is impacted with reduced PR-AUC, but the DAS shows 
robustness. Finally, once GWN is increased to SNR-20 levels, we see an 
extreme impact on the DAS class with a lesser impact on CAS and NAS than 
no GWN levels. Therefore, the spectrogram-based LightGBM ML model 
shows good performance with intermediate robustness to GWM. 
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class, as seen from the ROC area under the curve (ROC-AUC) scores. 
However, once the levels of GWN are increased to SNR-40, the lines for all 
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Fig. 5.2.20. PR curve showing significant impact (P = 0.000) of GWN on 
LightGMB models’ ability to identify lung sounds correctly (from top to 

bottom) 
GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound, LightGBM – Light Gradient Boosting 
Machine. 
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Fig. 5.2.20. PR curve showing significant impact (P = 0.000) of GWN on 
LightGMB models’ ability to identify lung sounds correctly (from top to 

bottom) 
GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound, LightGBM – Light Gradient Boosting 
Machine. 
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Fig. 5.2.21. ROC curve showing significant impact (P = 0.000) of GWN on 

LightGBM models’ ability to identify lung sounds correctly (from top to 
bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound, LightGBM – Light Gradient Boosting 
Machine. 
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CAS classes, as seen from ROC-AUC (area) scores. The model shockingly 
shows great resistance to medium levels of GWN at SNR-40. The two groups 
that are negatively affected are CAS and NAS. Finally, once GWN at SNR-20 
is added, two groups, NAS and CAS TPR drop significantly, and the machine 
model becomes useless. The DAS is the only class that maintains strong true 
positive rates. Therefore, the spectrogram-based LightGBM ML model only 
functions at no GWN and GWN SNR-40 and shows robustness to medium 
levels of GWN but not high levels of GWN. 

 
Fig. 5.2.22. Confusion metrics showing significant impact (P = 0.000)  
of GWN on Logistic Regression model’s ability to identify lung sounds  

correctly (from top to bottom) 
GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous 
auscultated sound, DAS – discontinuous auscultated sound. 
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CAS classes, as seen from ROC-AUC (area) scores. The model shockingly 
shows great resistance to medium levels of GWN at SNR-40. The two groups 
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is added, two groups, NAS and CAS TPR drop significantly, and the machine 
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From Fig. 5.2.22, the impact of Gaussian white noise is clearly observed 
on true positive (TP), true negative (TN), false positive (FP) and false nega-
tive (FP), as seen in the spectrogram-based Logistic Regression model’s 
confusion matrix. At no Gaussian white noise (GWN)-added levels, TP rates 
were above average for CAS, DAS and NAS with scores of 46/70, 28/50 and 
96/130, respectively. The confusion matrix at SNR-40 (medium levels of 
GWN) significantly impacted the model, with scores for CAS and DAS at 
5/70 and 10/50, respectively, with only 126/130 scores for NAS. However, 
once the GWN increased to SNR-20, it significantly worsened the model’s 
performance in discriminating between the three classes, leading to the 
machine model losing its power to discriminate between classes with only 
0/50 and 1/70 for CAS and DAS, respectively. The score for NAS was 
130/130. The spectrogram-based Logistic Regression model showed a reaso-
nably good overall performance for all three classes at no GWN-added levels. 
However, the model lacked any robustness as the score for CAS and DAS 
worsened significantly at GWN SNR-40 levels. The model’s discrimination 
power at the highest levels of GWN got even further impacted, and sounds 
were classed mainly as NAS. 

From Fig. 5.2.23, it can be observed that spectrogram-based Logistic 
Regression ML model achieves a reasonable performance of precision 
compared to recall for CAS and NAS sound classes but with significantly 
lower diagnostic levels for the DAS class, as exemplified by precision to 
recall area under the curve (PR-AUC). At medium levels of GWN of SNR-
40, all three classes are impacted, with the CAS class being impacted the 
most, followed by the NAS class, but the DAS class shows robustness, as 
shown by PR-AUC values. Finally, once GWN is increased to SNR-20 levels, 
we see an extreme impact on the DAS class recognition with a lesser impact 
on CAS and NAS classes, as compared to no GWN levels. 
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Fig. 5.2.23. PR curve showing significant impact (P = 0.000) of GWN on 

Logistic Regression model’s ability to identify lung sounds correctly  
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound. 
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Fig. 5.2.23. PR curve showing significant impact (P = 0.000) of GWN on 

Logistic Regression model’s ability to identify lung sounds correctly  
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound. 
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Fig. 5.2.24. ROC curve showing significant impact (P = 0.000) of GWN 
on Logistic Regression model’s ability to identify lung sounds correctly  

(from top to bottom) 
 GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous 
auscultated sound, DAS – discontinuous auscultated sound. 

From Fig. 5.2.24, the impact of GWN levels on the true positive rate 
(TPR) as compared to the false positive rate (FPR) in the receiver operating 
characteristic (ROC) curve can be observed for the spectrogram-based Logis-
tic Regression model. At no GWN added level, the model shows a very good 
performance, especially for CAS and DAS classes, with weaker (but still 
good) performance for the NAS class recognition, as seen from the ROC area 
under the curve (AUC) scores. The model performance drops is visible at 
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medium levels of GWN at SNR-40 for two sound groups: CAS and special 
NAS. It maintains good robustness for the DAS class. Finally, once GWN at 
SNR-20 is added, all three classes are impacted, with DAS maintaining the 
best ROC-AUC scores. The class’s TPR drops significantly for all three 
classes, but nonetheless, the performance is of a reasonable standard, and all 
three lines for all three classes maintain similar curvature and ROC-AUC 
values above 0.600, showing strong performance of the Logistic Regression 
ML model with ambient noise and strong robustness to even the highest 
GWN levels. 

 
Fig. 5.2.25. Confusion metrics showing significant impact (P = 0.000) of 

GWN on MLP model’s ability to identify lung sounds correctly (from top to 
bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound, MLP – Multilayer Perceptron. 
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medium levels of GWN at SNR-40 for two sound groups: CAS and special 
NAS. It maintains good robustness for the DAS class. Finally, once GWN at 
SNR-20 is added, all three classes are impacted, with DAS maintaining the 
best ROC-AUC scores. The class’s TPR drops significantly for all three 
classes, but nonetheless, the performance is of a reasonable standard, and all 
three lines for all three classes maintain similar curvature and ROC-AUC 
values above 0.600, showing strong performance of the Logistic Regression 
ML model with ambient noise and strong robustness to even the highest 
GWN levels. 
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From Fig. 5.2.25, the impact of Gaussian white noise (GWN) is clearly 
observed on true positive (TP), true negative (TN), false positive (FP) and 
false negative (FP) as seen in spectrogram-based Multilayer Perceptron 
(MLP) ML model’s confusion matrix. At no GWN-added levels, TP values 
were above average for CAS, DAS and NAS, with scores of 51/70, 26/50 and 
94/130, respectively. The confusion matrix at SNR-40 (medium levels) 
showed a significant impact of ambient noise on the model with scores for 
CAS and DAS at 0/70 and 9/50, respectively, with only 124/130 scores for 
NAS class identification being strong. However, once the GWN increased to 
SNR-20, it significantly worsened the model’s performance in discriminating 
between the three classes, leading to the machine model losing its power to 
discriminate between classes with only 0/50 and 0/70 for CAS and DAS, 
respectively. The score for NAS sound class was 128/130. The MLP model 
performed reasonably well for all three classes at no GWN-added levels. 
However, the model lacked robustness as the CAS and DAS score worsened 
significantly at GWN SNR-40 levels. The model’s discrimination power got 
even further impacted, and sounds were classed mainly as NAS. 

From Fig. 5.2.26, it can be observed that the spectrogram-based Multi-
layer Perceptron (MLP) achieves a reasonable performance of precision com-
pared to recall (PR) for the CAS and NAS classes, but with significantly 
lower diagnostic levels for the DAS class as exemplified via precision to 
recall area under the curve (PR-AUC). At medium levels of GWN of SNR-
40, all three classes, especially CAS and NAS, are being impacted, but the 
DAS class is showing robustness, as exemplified by PR-AUC. However, 
DAS is still the worst-performing class at medium levels of GWN for this 
model. Finally, once GWN is increased to SNR-20 levels, a drop in precision 
to recall is observed with reduced PR-AUC values, impacting particularly the 
DAS class, with a lesser impact on CAS and very little impact on NAS, 
indicating how high levels of noise impact all three classes of lung sounds at 
very different levels but all negatively. 
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Fig. 5.2.26. PR curve showing significant impact (P = 0.000) of GWN  

on MLP model’s ability to identify lung sounds correctly  
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous 
auscultated sound, DAS – discontinuous auscultated sound, MLP – Multilayer Perceptron. 
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Fig. 5.2.27. ROC curve showing significant impact (P = 0.000) of GWN 

on MLP model’s ability to identify lung sounds correctly 
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound, MLP – Multilayer Perceptron. 

From Fig. 5.2.27, the impact of Gaussian white noise (GWN) levels on 
true positive rate (TPR) as compared to the false positive rate (FPR) in the 
receiver operating characteristic (ROC) curve can be observed for the spectro-
gram-based Multilayer Perceptron (MLP) ML model. At no GWN added 
level, the model shows a very good performance, especially for CAS, follo-
wed by DAS classes with weaker (but still very good) performance for the 
NAS class as observed from the ROC area under the curve (ROC-AUC) 
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scores. The model performance drops at medium levels of GWN (SNR-40) 
for two groups: CAS and particularly NAS. DAS class maintains a very good 
performance at medium Gaussian white noise (GWN) levels. Finally, once 
GWN at SNR-20 is added to all three classes, all models’ performance beco-
mes very average. Nonetheless, all classes maintain a good ratio of TPR to 
FPR with a reasonable ROC-AUC throughout all three levels of GWN, with 
the DAS class performing the best. The spectrogram-based MLP model does 
not have the highest values for no GWN-added levels for all sound classes. 
However, it maintains robustness at all three levels of GWN, which is one of 
the few models with this property in ROC graph. 

From Fig. 5.2.28, the impact of Gaussian white noise was observed on 
true positive (TP), true negative (TN), false positive (FP) and false negative 
(FP) as seen in the spectrogram-based Random Forest ML model’s confusion 
matrix. At no Gaussian white noise (GWN) added level, TP scores were 
reasonable for CAS and NAS recognition, with scores of 45/70 and 101/130, 
respectively. The model struggled with the DAS class, the TP rate standing 
only at 14/50. The confusion matrix at SNR-40 (medium levels) showed no 
significant impact on the model, with scores for CAS and DAS at 8/70 and 
3/50, respectively, with only 123/130 scores for NAS. However, once the 
GWN increased to SNR-20, it significantly worsened the model’s perfor-
mance in discriminating between the three sound classes. The machine model 
lost its ability to discriminate between classes, with only 0/50, 19/70, and 
93/130 scores for DAS, CAS, and NAS, respectively. 

The spectrogram-based Random Forest ML model showed overall poor 
performance as it had problems identifying DAS class sounds even at no 
GWN added levels. The model was not robust as the CAS and DAS scores 
worsened significantly at GWN SNR-40 levels. The model's discrimination 
power got even further reduced, and sounds were classed either as CAS or as 
NAS at GWN SNR-20 level. 
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scores. The model performance drops at medium levels of GWN (SNR-40) 
for two groups: CAS and particularly NAS. DAS class maintains a very good 
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performance as it had problems identifying DAS class sounds even at no 
GWN added levels. The model was not robust as the CAS and DAS scores 
worsened significantly at GWN SNR-40 levels. The model's discrimination 
power got even further reduced, and sounds were classed either as CAS or as 
NAS at GWN SNR-20 level. 
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Fig. 5.2.28. Confusion metrics showing significant impact (P = 0.000) of 
GWN on Random Forest model’s ability to identify lung sounds correctly 

(from top to bottom) 
GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound. 
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Fig. 5.2.29. PR curve showing significant impact (P = 0.000) of GWN  

on Random Forest model’s ability to identify lung sounds correctly  
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound. 

From Fig. 5.2.29, it can be observed that spectrogram-based Random 
Forest ML model achieves reasonable precision performance compared to 
recall (PR) for CAS and NAS classes but with significantly lower diagnostic 
levels for the DAS class, as exemplified via precision to recall area under the 
curve (PR-AUC). At medium levels of Gaussian white noise (GWN) of SNR-
40, two classes recognition was affected: CAS and NAS. However, the DAS 
class showed robustness, as exemplified by PR-AUC, and higher precision 
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Fig. 5.2.29. PR curve showing significant impact (P = 0.000) of GWN  

on Random Forest model’s ability to identify lung sounds correctly  
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound. 

From Fig. 5.2.29, it can be observed that spectrogram-based Random 
Forest ML model achieves reasonable precision performance compared to 
recall (PR) for CAS and NAS classes but with significantly lower diagnostic 
levels for the DAS class, as exemplified via precision to recall area under the 
curve (PR-AUC). At medium levels of Gaussian white noise (GWN) of SNR-
40, two classes recognition was affected: CAS and NAS. However, the DAS 
class showed robustness, as exemplified by PR-AUC, and higher precision 
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than recall levels. Finally, once GWN is increased to SNR-20 levels, we see 
an extreme impact on the DAS class with a lesser impact on CAS and NAS, 
indicating how high levels of ambient noise impact all three classes of lung 
sounds identification at very different levels, all negatively. 

 
Fig. 5.2.30. ROC curve showing significant impact (P = 0.000) of GWN  

on Random Forest model’s ability to identify lung sounds correctly  
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound. 
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From Fig. 5.2.30, the impact of (Gaussian white noise) GWN levels on 
the true positive rate (TPR) compared to the false positive rate (FPR) in the 
receiver operating characteristic (ROC) curve can be observed for the spectro-
gram-based Random Forest ML model. At no GWN-added level, the model 
shows a very good performance, especially for CAS, followed by DAS classes, 
with weaker (but still of good standard) performance for NAS class as seen 
from the ROC area under the curve (AUC) scores. The model performance 
drops at medium levels of GWN at SNR-40 for two groups: DAS and parti-
cularly NAS. The DAS class maintains a very good performance at medium 
levels of GWN. Finally, once GWN at SNR-20 was added, all three classes 
were heavily impacted. The ML models’ performance became very poor at the 
highest levels of GWN, showing that the model held robustness to ambient 
noise up to SNR-40 but, at SNR-20, lost its power for all classes with reduced 
TPR compared to FPR and a drop in ROC-AUC values. 

From Fig. 5.2.31, the impact of Gaussian white noise is observed on true 
positive (TP), true negative (TN), false positive (FP) and false negative (FP) 
scores as seen in the spectrogram-based SVM model’s confusion matrix. At 
no Gaussian white noise (GWN) level, TP rates were low for CAS and DAS, 
with scores of 13/70 and 2/50, respectively. The only class that correctly 
identified was NAS with 122/130 score. The confusion matrix at SNR-40 
(medium noise levels) showed no significant impact on the model, with 
scores for CAS, DAS and NAS at 13/70, 2/50 and 122/130. However, once 
the GWN increased to SNR-20, it worsened the performance significantly of 
the model to discriminate between the three, leading to the machine model 
losing its power to discriminate between classes with only 5/50 and 1/70 for 
CAS and DAS correctly identified, respectively, with only NAS having a 
good score of 130/130. The spectrogram-based SVM ML model performed 
poorly even at the no GWN-added levels for CAS and DAS sound identifi-
cation. Yet, some robustness was shown by the model, as the scores did not 
change at GWN SNR-40 levels. However, at GWN SNR-20, the model’s 
discrimination power completely collapsed, and all classes were identified as 
NAS. 
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Fig. 5.2.31. Confusion metrics showing significant impact (P = 0.000) of 

GWN on SVM model’s ability to identify lung sounds correctly 
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS– continuous auscul-
tated sound, DAS – discontinuous auscultated sound, SVM – Support Vector Machines. 
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Fig. 5.2.32. PR curve showing significant impact (P = 0.000) of GWN on 
SVM model’s ability to identify lung sounds correctly (from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound, SVM – Support Vector Machines. 
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GWN is increased to SNR-20 level, we see an extreme impact on the DAS 
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Fig. 5.2.32. PR curve showing significant impact (P = 0.000) of GWN on 
SVM model’s ability to identify lung sounds correctly (from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound, SVM – Support Vector Machines. 
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noise impact all three classes of lung sounds at very different levels, but all 
negatively. Though the spectrogram-based SVM ML model achieved reaso-
nable performance overall at no GWN-added, it came with a caveat of varied 
performance between groups, with DAS sound class identification perfor-
mance being very poor. Yet, the SVM model showed little robustness to 
GWN at medium and even more so at high GWN levels. 

 
Fig. 5.2.33. ROC curve showing significant impact (P = 0.000) of GWN on 
SVM model’s ability to identify lung sounds correctly (from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS– continuous auscul-
tated sound, DAS – discontinuous auscultated sound, SVM – Support Vector Machines. 
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From Fig. 5.2.33, the impact of GWN levels on the true positive rate 
(TPR) as compared to the false positive rate (FPR) in the receiver operating 
characteristic (ROC) curve can be observed for the spectrogram-based 
Support Vector Machines (SVM) model. At no GWN added level, this ML 
model shows a good performance, especially for DAS, followed closely by 
CAS classes with weaker (but still of good standard) performance for NAS 
class as seen from ROC area under the curve (ROC-AUC) scores. The model 
performance drops a bit at medium levels of Gaussian white noise (SNR-40) 
for two sound groups recognition: CAS and NAS classes. Meanwhile, the 
DAS class maintained excellent performance at medium levels of GWN. 
Finally, once GWN at SNR-20 was added, all three classes were heavily 
impacted. The performance became poorer at the highest levels of GWN, 
especially for the NAS class, showing that the SVM model holds robustness 
to ambient noise up to SNR-40 but, at SNR-20, loses its power for all classes 
with a drop of TPR compared to FPR and decreased ROC-AUC values. 

From Fig. 5.2.34, the impact of Gaussian white noise is clearly observed 
on true positive (TP), true negative (TN), false positive (FP) and false nega-
tive (FP) as seen in the spectrogram-based Extreme Gradient Boosting classifier 
(XGBoost) ML model’s confusion matrix. At no Gaussian white noise added 
level, TP values for CAS, DAS, and NAS sound classes were 50/70, 15/50 
and 96/130, respectively. The confusion matrix at SNR-40 (medium levels of 
GWN) showed ML model’s decreased ability to identify CAS classes 
correctly with a TP score of 17/70. DAS and NAS scores were at 26/50 and 
111/130, respectively. However, once the GWN increased to SNR-20, it 
significantly worsened the model’s performance to discriminate ability bet-
ween the three sound classes, leading to the XGBoost machine learning model 
to lose its power to discriminate between classes with only 3/50 and 0/70 for 
CAS and DAS correctly identified. The NAS class at the highest GWN was 
identified. The DAS classes were hugely impacted, with 0/50 identified 
correctly, whilst CAS identification was at 31/70 and 62/130 for NAS. The 
XGBoost showed a good performance at no GWN added levels, especially 
for CAS and DAS classes, and reasonable robustness at GWN SNR-40 levels. 
However, once the levels increased, the ability of the model to discriminate 
between three classes was reduced to two: CAS and NAS. 
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From Fig. 5.2.34, the impact of Gaussian white noise is clearly observed 
on true positive (TP), true negative (TN), false positive (FP) and false nega-
tive (FP) as seen in the spectrogram-based Extreme Gradient Boosting classifier 
(XGBoost) ML model’s confusion matrix. At no Gaussian white noise added 
level, TP values for CAS, DAS, and NAS sound classes were 50/70, 15/50 
and 96/130, respectively. The confusion matrix at SNR-40 (medium levels of 
GWN) showed ML model’s decreased ability to identify CAS classes 
correctly with a TP score of 17/70. DAS and NAS scores were at 26/50 and 
111/130, respectively. However, once the GWN increased to SNR-20, it 
significantly worsened the model’s performance to discriminate ability bet-
ween the three sound classes, leading to the XGBoost machine learning model 
to lose its power to discriminate between classes with only 3/50 and 0/70 for 
CAS and DAS correctly identified. The NAS class at the highest GWN was 
identified. The DAS classes were hugely impacted, with 0/50 identified 
correctly, whilst CAS identification was at 31/70 and 62/130 for NAS. The 
XGBoost showed a good performance at no GWN added levels, especially 
for CAS and DAS classes, and reasonable robustness at GWN SNR-40 levels. 
However, once the levels increased, the ability of the model to discriminate 
between three classes was reduced to two: CAS and NAS. 

85 

 
Fig. 5.2.34. Confusion metrics showing significant impact (P = 0.000) of 
GWN on XGBoost model’s ability to identify lung sounds correctly (from 

top to bottom) 
GWN – Gaussian white noise, NAS – normal auscultated sound, CAS– continuous auscul-
tated sound, DAS – discontinuous auscultated sound, XGBoost – Extreme Gradient Boosting 
classifier. 
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Fig. 5.2.35. PR curve showing significant impact (P = 0.000) of GWN  

on XGBoost model’s ability to identify lung sounds correctly  
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound, XGBoost – Extreme Gradient Boosting 
classifier. 

From Fig. 5.2.35, it can be observed that spectrogram-based Extreme 
Gradient Boosting classifier (XGBoost) ML model achieved a good 
performance of precision compared to recall for the CAS and NAS classes 
but with slightly lower diagnostic levels for the DAS class, as exemplified 
via precision to recall area under the curve (PR-AUC). At medium levels of 
Gaussian white noise (SNR-40), the CAS class was impacted the most, with 
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a significant drop in precision compared to recall. Meanwhile, NAS sound 
class identification showed reasonable robustness to medium noise impact. 
Whilst DAS showed a very strong performance. Finally, once GWN is 
increased to SNR-20 levels, we see an extremely negative impact on NAS 
and DAS classes recognition with a lesser impact on NAS sound class. 

 
Fig. 5.2.36. ROC curve showing significant impact (P = 0.000) of GWN  

on XGBoost model’s ability to identify lung sounds correctly  
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS– continuous auscul-
tated sound, DAS – discontinuous auscultated sound, XGBoost – Extreme Gradient Boosting 
classifier. 

Spectrogram ROC curve – 
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Spectrogram ROC curve – 
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a significant drop in precision compared to recall. Meanwhile, NAS sound 
class identification showed reasonable robustness to medium noise impact. 
Whilst DAS showed a very strong performance. Finally, once GWN is 
increased to SNR-20 levels, we see an extremely negative impact on NAS 
and DAS classes recognition with a lesser impact on NAS sound class. 

 
Fig. 5.2.36. ROC curve showing significant impact (P = 0.000) of GWN  

on XGBoost model’s ability to identify lung sounds correctly  
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS– continuous auscul-
tated sound, DAS – discontinuous auscultated sound, XGBoost – Extreme Gradient Boosting 
classifier. 
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From Fig. 5.2.36, the impact of GWN levels on the true positive rate 
(TPR) as compared to the false positive rate (FPR) in the receiver operating 
characteristic (ROC) curve can be observed for the spectrogram-based 
Extreme Gradient Boosting classifier (XGBoost) model. At no GWN-added 
level, the model shows a very good performance, especially for DAS, follo-
wed closely by the CAS class with slightly weaker (but still of good standard) 
performance for the NAS class recognition, as seen from the ROC area under 
the curve (ROC-AUC) scores. The model performance drops significantly at 
medium levels of GWN (SNR-40) for two groups: CAS and NAS. The DAS 
class maintains a very good performance at medium levels of GWN. Finally, 
once GWN at SNR-20 is added, all three classes are very heavily impacted. 
The ML model’s performance becomes poorer at the highest levels of GWN, 
especially for CAS and NAS sound identification, with only good perfor-
mance for DAS. Therefore, the XGBoost model holds robustness to ambient 
noise up to SNR-40 but, at SNR-20, loses its power for two classes, making 
it unviable at the highest levels of GWN. 

From Fig. 5.2.37, the impact of Gaussian white noise (GWN) is clearly 
observed on true positive (TP), true negative (TN), false positive (FP) and 
false negative (FP), as seen in the scalogram-based AdaBoost model’s confu-
sion matrix. At no GWN added levels, only 4/70 CAS was identified correct-
ly, 15/50 of the DAS class was correctly identified, and 112/130 of the NAS 
were correctly identified. The confusion matrix at SNR-40 (medium GWN 
levels) performs better by determining TP for CAS, DAS and NAS at 16/70, 
30/50 and 101, respectively. However, once the GWN increased to SNR-20, 
it significantly worsened the model’s performance in discriminating between 
the three classes, leading to the machine model losing its power to discrimi-
nate between classes with only 3/50 and 0/70 for CAS and DAS correctly 
identified, respectively. The NAS class at the highest GWN was identified at 
121/130 score. The scalogram-based AdaBoost ML model showed poor 
performance at no GWN levels for CAS and DAS classes, showing bias 
towards NAS classification. This changed significantly at GWN SNR-40 
levels, with the model performing better predictions for all three classes, 
especially CAS and DAS. Though once the highest levels of GWN were 
introduced at SNR-20 levels, the scalogram-based AdaBoost model lost its 
discrimination power completely and classed all lung sounds as NAS. 
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Fig. 5.2.37. Confusion metrics showing significant impact (P = 0.000)  
of GWN on AdaBoost model’s ability to identify lung sounds correctly  

(from top to bottom) 
GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound, AdaBoost – Adaptive Boosting. 
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Fig. 5.2.38. PR curve showing significant impact (P = 0.000) of GWN  

on AdaBoost model’s ability to identify lung sounds correctly  
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS– continuous auscul-
tated sound, DAS – discontinuous auscultated sound, AdaBoost – Adaptive Boosting. 

From Fig. 5.2.38, it can be observed that scalogram-based AdaBoost 
achieved a poor precision performance compared to recall for CAS, DAS 
classes but with slightly better performance diagnostic levels for the NAS 
class as exemplified via precision-recall area under the curve (PR-AUC) 
values. At medium levels of Gaussian white noise (SNR-40), CAS and NAS 
classes recognition was impacted the most with a significant drop in precision 
compared to recall, whilst DAS class identification showed reasonable 

Scalogram precision-recall curve – 
AdaBoost (no GWN)

Scalogram precision-recall curve – 
AdaBoost (GWN SNR-40)

Pr
ec

is
io

ns

Pr
ec

is
io

ns

Recall Recall

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0
1.0 1.00.0 0.00.2 0.20.4 0.40.6 0.60.8 0.8

 Scalogram PR curve (class CAS) (area = 0.487)
 Scalogram PR curve (class DAS) (area = 0.415)
 Scalogram PR curve (class NAS) (area = 0.673)

 Scalogram PR curve (class CAS) (area = 0.345)
 Scalogram PR curve (class DAS) (area = 0.429)
 Scalogram PR curve (class NAS) (area = 0.587)

Scalogram precision-recall curve – 
AdaBoost (GWN SNR-20)

Pr
ec

is
io

ns

Recall

1.0

0.8

0.6

0.4

0.2

0.0
1.00.0 0.2 0.4 0.6 0.8

 Scalogram PR curve (class CAS) (area = 0.410)
 Scalogram PR curve (class DAS) (area = 0.369)
 Scalogram PR curve (class NAS) (area = 0.575)

Scalogram precision-recall curve – 
AdaBoost (no GWN)

Scalogram precision-recall curve – 
AdaBoost (GWN SNR-40)

Pr
ec

is
io

ns

Pr
ec

is
io

ns

Recall Recall

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0
1.0 1.00.0 0.00.2 0.20.4 0.40.6 0.60.8 0.8

 Scalogram PR curve (class CAS) (area = 0.487)
 Scalogram PR curve (class DAS) (area = 0.415)
 Scalogram PR curve (class NAS) (area = 0.673)

 Scalogram PR curve (class CAS) (area = 0.345)
 Scalogram PR curve (class DAS) (area = 0.429)
 Scalogram PR curve (class NAS) (area = 0.587)

Scalogram precision-recall curve – 
AdaBoost (GWN SNR-20)

Pr
ec

is
io

ns

Recall

1.0

0.8

0.6

0.4

0.2

0.0
1.00.0 0.2 0.4 0.6 0.8

 Scalogram PR curve (class CAS) (area = 0.410)
 Scalogram PR curve (class DAS) (area = 0.369)
 Scalogram PR curve (class NAS) (area = 0.575)



9191 

robustness, but it has to be remembered that its scores were the worst at no 
GWN levels. Finally, once GWN is increased to SNR-20 levels, we see an 
extremely negative impact on DAS class with a lesser impact on NAS and 
CAS classes compared to no GWN levels. 

 
Fig. 5.2.39. ROC curve showing significant impact (P = 0.000) of GWN  

on AdaBoost model’s ability to identify lung sounds correctly  
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound, AdaBoost – Adaptive Boosting. 
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robustness, but it has to be remembered that its scores were the worst at no 
GWN levels. Finally, once GWN is increased to SNR-20 levels, we see an 
extremely negative impact on DAS class with a lesser impact on NAS and 
CAS classes compared to no GWN levels. 

 
Fig. 5.2.39. ROC curve showing significant impact (P = 0.000) of GWN  

on AdaBoost model’s ability to identify lung sounds correctly  
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound, AdaBoost – Adaptive Boosting. 
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From Fig. 5.2.39, the impact of Gaussian white noise (GWN) levels on 
the true positive rate (TPR) as compared to the false positive rate (FPR) in 
the receiver operating characteristic (ROC) curve can be observed for the 
scalogram-based Adaptive Boosting (AdaBoost) model. At no GWN added 
level, the model shows a good performance, especially for DAS, followed by 
CAS classes with weaker (but only average standard) performance for NAS 
class as seen from ROC area under the curve (ROC-AUC) scores. The model 
performance drops significantly at medium levels of GWN at SNR-40 for two 
groups: CAS and NAS. The DAS class maintains a very good performance 
at medium levels of GWN. Finally, once GWN at SNR-20 is added, all three 
classes will be impacted. The performance becomes poorer at the highest 
levels of GWN, especially for CAS and NAS, with only very good perfor-
mance for DAS. Therefore, the model holds robustness to ambient noise up 
to SNR-40 but, at SNR-20, loses its power for two sound classes recognition, 
making the AdaBoost model useless at the highest levels of GWN. 

From Fig. 5.2.40, the impact of Gaussian white noise (GWN) is clearly 
observed on true positive (TP), true negative (TN), false positive (FP) and false 
negative (FP), as seen in the scalogram-based Categorical data Gradient 
Boosting (CatBoost) model’s confusion matrix. At no GWN added levels, 
33/70 CAS was identified correctly, with 28/50 of DAS class correctly 
identified and 91/130 of NAS correctly identified. The confusion matrix at 
SNR-40 (medium levels) shows a significant decrease in the model’s perfor-
mance, with a drop in TP for CAS and DAS at 15/70 and 20/50 respectively. 
However, it maintained reasonable performance for NAS 97/130. The 
increase in the GWN levels to SNR-20 significantly worsens the model's 
performance in discriminating between the three classes, leading to the 
machine model to lose its power to discriminate between classes, with only 
0/50 and 11/130 for DAS and NAS sounds correctly identified. The CAS 
class at the highest GWN was identified at 60/70. This showed that even 
though the scalogram-based CatBoost model showed a reasonable 
performance at no GWN level for all three classes. The model showed some 
resistance to ambient noise, and it still discriminated all three classes with 
varied TP values and ever-increasing FP values. Once GWN was increased 
to SNR-20, all classes were primarily identified as CAS and became useless 
at discriminating between all three classes. 
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Fig. 5.2.40. Confusion metrics showing significant impact (P = 0.000)  
of GWN on CatBoost model’s ability to identify lung sounds correctly  

(from top to bottom) 
GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound, CatBoost – Categorical data Gradient 
Boosting. 

From Fig. 5.2.41, it can be observed that the scalogram-based categorical 
boosting (CatBoost) model achieved a weaker performance of precision 
compared to recall for the CAS class of sounds but with slightly better 
performance diagnostic levels for DAS and NAS classes, as exemplified via 
area under the curve (AUC) for PR curve. At medium levels of GWN of SNR-
40, CAS and DAS, classes were most heavily impacted, with a lesser impact 
on NAS. Finally, once GWN is increased to SNR-20 levels, we see an extre-
mely negative impact on DAS classes with a lesser impact on NAS and CAS 
classes than on no GWN levels. 
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Fig. 5.2.41. PR curve showing significant impact (P = 0.000) of GWN  

on CatBoost model’s ability to identify lung sounds correctly  
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound, CatBoost – Categorical data Gradient 
Boosting. 
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Fig. 5.2.41. PR curve showing significant impact (P = 0.000) of GWN  

on CatBoost model’s ability to identify lung sounds correctly  
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound, CatBoost – Categorical data Gradient 
Boosting. 

Scalogram precision-recall curve – 
CatBoost (no GWN)

Scalogram precision-recall curve – 
CatBoost (GWN SNR-40)
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Fig. 5.2.42. ROC curve showing significant impact (P = 0.000) of GWN  

on CatBoost model’s ability to identify lung sounds correctly  
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound, CatBoost – Categorical data Gradient 
Boosting. 

From Fig. 5.2.42, the impact of GWN levels on the true positive rate 
(TPR) as compared to the false positive rate (FPR) in the receiver operating 
characteristic (ROC) curve can be observed for the scalogram-based catego-
rical boosting (CatBoost) model. At no GWN added level, the model shows 
a good performance for the DAS class, followed by CAS classes with the 
weakest performance for the NAS as seen from the ROC area under the curve 
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(ROC-AUC). The model performance drops significantly at medium levels 
of GWN (SNR-40) for two groups: CAS and NAS. Meanwhile, the DAS class 
performs well at medium levels of GWN. Finally, once GWN increased to 
SNR-20 level, all two classes will be very heavily impacted. The CatBoost 
model’s performance becomes poorer at the highest levels of GWN, espec-
ially for CAS and NAS sound recognition, and true favourable rates decrease 
to an inferior level with only good performance for DAS sound group. 
Therefore, the CatBoost model shows reasonable performance at no GWN 
levels, but already at SNR-40, the model starts having problems with CAS 
and NAS classes identification. Therefore, this model is only a valuable as a 
diagnostic tool at no GWN level.  

 
Fig. 5.2.43. Confusion metrics showing significant impact (P = 0.000)  

of GWN on Extra Trees model’s ability to identify lung sounds correctly 
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound. 
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(ROC-AUC). The model performance drops significantly at medium levels 
of GWN (SNR-40) for two groups: CAS and NAS. Meanwhile, the DAS class 
performs well at medium levels of GWN. Finally, once GWN increased to 
SNR-20 level, all two classes will be very heavily impacted. The CatBoost 
model’s performance becomes poorer at the highest levels of GWN, espec-
ially for CAS and NAS sound recognition, and true favourable rates decrease 
to an inferior level with only good performance for DAS sound group. 
Therefore, the CatBoost model shows reasonable performance at no GWN 
levels, but already at SNR-40, the model starts having problems with CAS 
and NAS classes identification. Therefore, this model is only a valuable as a 
diagnostic tool at no GWN level.  

 
Fig. 5.2.43. Confusion metrics showing significant impact (P = 0.000)  

of GWN on Extra Trees model’s ability to identify lung sounds correctly 
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound. 

Scalogram confusion matrix – Scalogram confusion matrix – 
Extra Trees (no GWN)

 
Extra Trees (GWN SNR-40)

A
ct

ua
l

A
ct

ua
l

Predicted Predicted

CAS

DAS

NAS

CAS

DAS

NAS

CAS CASDAS DASNAS NAS

100

80

60

40

20

0

70

60

50

40

30

20

10

31 2 36

0 13 35

17 10 102

15 11 42

2 15 32

24 28 77

Scalogram confusion matrix – 
Extra Trees (GWN SNR-20)

A
ct

ua
l

Predicted

CAS

DAS

NAS

CAS DAS NAS

100

80

60

40

20

0

66 0 3

50 0 0

116 2 10



9796 

(ROC-AUC). The model performance drops significantly at medium levels 
of GWN (SNR-40) for two groups: CAS and NAS. Meanwhile, the DAS class 
performs well at medium levels of GWN. Finally, once GWN increased to 
SNR-20 level, all two classes will be very heavily impacted. The CatBoost 
model’s performance becomes poorer at the highest levels of GWN, espec-
ially for CAS and NAS sound recognition, and true favourable rates decrease 
to an inferior level with only good performance for DAS sound group. 
Therefore, the CatBoost model shows reasonable performance at no GWN 
levels, but already at SNR-40, the model starts having problems with CAS 
and NAS classes identification. Therefore, this model is only a valuable as a 
diagnostic tool at no GWN level.  

 
Fig. 5.2.43. Confusion metrics showing significant impact (P = 0.000)  

of GWN on Extra Trees model’s ability to identify lung sounds correctly 
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound. 

Scalogram confusion matrix – Scalogram confusion matrix – 
Extra Trees (no GWN)
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From Fig. 5.2.43, the impact of Gaussian white noise is observed on true 
positive (TP), true negative (TN), false positive (FP) and false negative (FP) 
as seen in the scalogram-based Extra Trees model’s confusion matrix. At no 
GWN added levels, 31/70 CAS was identified correctly, 13/50 of the DAS 
class was correctly identified, and 102/130 of the NAS was correctly identi-
fied. The confusion matrix at SNR-40 (medium levels) shows a decrease in 
model performance with a drop in TP for CAS and NAS at 15/70 and NAS 
at 77/130, respectively, but maintained performance (although still poor) for 
DAS at 15/50. The increase in the GWN levels to SNR-20 significantly wor-
sens the model’s performance in discriminating between the three sound 
classes, leading to the machine model losing its power to discriminate 
between classes, with only 0/50 for DAS and 10/130 for NAS correctly iden-
tified. The CAS class at the highest GWN was identified at 66/70. This 
showed that the scalogram-based Extra Trees model had a poor diagnostic 
accuracy for the DAS class even at no GWN level and showed a lack of 
robustness when GWN level was increased to SNR-40; class discrimination 
significantly worsened with GWN SNR-20 level where all classes were 
mostly identified as CAS. 

From Fig. 5.2.44, it can be observed that scalogram-based Extra Trees 
ML model achieved an overall reasonable performance of precision com-
pared to recall for CAS and DAS class of sounds but with significantly worse 
diagnostic performance for the DAS class as exemplified via precision to 
recall area under the curve (PR-AUC). At medium levels of GWN (SNR-40) 
in all three classes, the DAS class felt the most significant impact. Finally, 
once GWN is increased to SNR-20 level, we see an extremely negative 
impact on DAS class with a lesser impact on CAS. The NAS class shows 
robustness, but the results are worse than no GWN level, as the PR-AUC 
shows. 

96 

(ROC-AUC). The model performance drops significantly at medium levels 
of GWN (SNR-40) for two groups: CAS and NAS. Meanwhile, the DAS class 
performs well at medium levels of GWN. Finally, once GWN increased to 
SNR-20 level, all two classes will be very heavily impacted. The CatBoost 
model’s performance becomes poorer at the highest levels of GWN, espec-
ially for CAS and NAS sound recognition, and true favourable rates decrease 
to an inferior level with only good performance for DAS sound group. 
Therefore, the CatBoost model shows reasonable performance at no GWN 
levels, but already at SNR-40, the model starts having problems with CAS 
and NAS classes identification. Therefore, this model is only a valuable as a 
diagnostic tool at no GWN level.  

 
Fig. 5.2.43. Confusion metrics showing significant impact (P = 0.000)  

of GWN on Extra Trees model’s ability to identify lung sounds correctly 
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound. 

Scalogram confusion matrix – Scalogram confusion matrix – 
Extra Trees (no GWN)
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Fig. 5.2.44. PR curve showing significant impact (P = 0.000) of GWN  

on Extra Trees model’s ability to identify lung sounds correctly  
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound. 
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Fig. 5.2.45. ROC curve showing significant impact (P = 0.000) of GWN  

on Extra Trees model’s ability to identify lung sounds correctly  
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound. 

From Fig. 5.2.45, the spectrogram-based Extra Trees model can observe 
the impact of GWN levels on the true positive rate (TPR) compared to the 
false positive rate (FPR) in the receiver operating characteristic (ROC) curve. 
At no GWN added to the level, the model shows a reasonable performance, 
especially for CAS, followed by DAS classes with weaker (but only of aver-
age standard) performance for the NAS class, as seen from the ROC graph’s 
area under the curve (AUC). The model performance drops significantly at 

 
Extra Trees (no GWN)

 
Extra Trees (GWN SNR-40)

Tr
ue

 p
os

it
iv

e 
ra

te

Tr
ue

 p
os

it
iv

e 
ra

te

False positive rate False positive rate

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0
1.0 1.00.0 0.00.2 0.20.4 0.40.6 0.60.8 0.8

 Scalogram ROC curve (class CAS) (area = 0.774)
 Scalogram ROC curve (class DAS) (area = 0.756)
 Scalogram ROC curve (class NAS) (area = 0.632)

 Scalogram ROC curve (class CAS) (area = 0.554)
 Scalogram ROC curve (class DAS) (area = 0.658)
 Scalogram ROC curve (class NAS) (area = 0.523)

Scalogram ROC curve – 
Extra Trees (GWN SNR-20)

Tr
ue

 p
os

it
iv

e 
ra

te

False positive rate

1.0

0.8

0.6

0.4

0.2

0.0
1.00.0 0.2 0.4 0.6 0.8

 Scalogram ROC curve (class CAS) (area = 0.472)
 Scalogram ROC curve (class DAS) (area = 0.482)
 Scalogram ROC curve (class NAS) (area = 0.509)

Scalogram ROC curve – Scalogram ROC curve – 
Extra Trees (no GWN)

 
Extra Trees (GWN SNR-40)

Tr
ue

 p
os

it
iv

e 
ra

te

Tr
ue

 p
os

it
iv

e 
ra

te

False positive rate False positive rate

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0
1.0 1.00.0 0.00.2 0.20.4 0.40.6 0.60.8 0.8

 Scalogram ROC curve (class CAS) (area = 0.774)
 Scalogram ROC curve (class DAS) (area = 0.756)
 Scalogram ROC curve (class NAS) (area = 0.632)

 Scalogram ROC curve (class CAS) (area = 0.554)
 Scalogram ROC curve (class DAS) (area = 0.658)
 Scalogram ROC curve (class NAS) (area = 0.523)

Scalogram ROC curve – 
Extra Trees (GWN SNR-20)

Tr
ue

 p
os

it
iv

e 
ra

te

False positive rate

1.0

0.8

0.6

0.4

0.2

0.0
1.00.0 0.2 0.4 0.6 0.8

 Scalogram ROC curve (class CAS) (area = 0.472)
 Scalogram ROC curve (class DAS) (area = 0.482)
 Scalogram ROC curve (class NAS) (area = 0.509)

Scalogram ROC curve – Scalogram ROC curve –



100100 

medium levels of GWN (SNR-40) for all three groups, especially CAS and 
NAS. Finally, once GWN at SNR-20 is added, all three classes will be heavily 
impacted. The spectrogram-based Extra Trees ML model shows reasonable 
performance at no GWN level. However, once GWN is added even at 
medium level (SNR-40), the model loses its power with a drop of TPR 
compared to FPR, especially for CAS and NAS sound classes identification. 
Therefore, the Extra Trees model is only useful, according to the ROC curve, 
without GWN, because it lacks robustness to noise. 

 
Fig. 5.2.46. Confusion metrics showing significant impact (P = 0.000) of 

GWN on gradient boosting model’s ability to identify lung sounds correctly 
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound. 
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medium levels of GWN (SNR-40) for all three groups, especially CAS and 
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medium level (SNR-40), the model loses its power with a drop of TPR 
compared to FPR, especially for CAS and NAS sound classes identification. 
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medium levels of GWN (SNR-40) for all three groups, especially CAS and 
NAS. Finally, once GWN at SNR-20 is added, all three classes will be heavily 
impacted. The spectrogram-based Extra Trees ML model shows reasonable 
performance at no GWN level. However, once GWN is added even at 
medium level (SNR-40), the model loses its power with a drop of TPR 
compared to FPR, especially for CAS and NAS sound classes identification. 
Therefore, the Extra Trees model is only useful, according to the ROC curve, 
without GWN, because it lacks robustness to noise. 
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From Fig. 5.2.46, the impact of Gaussian white noise (GWN) is observed 
on true positive (TP), true negative (TN), false positive (FP) and false nega-
tive (FP) as seen in the scalogram-based Gradient Boosting ML model’s 
confusion matrix. At no GWN level, 39/70 CAS was identified correctly, 
16/50 of the DAS class was correctly identified, and 54/130 of the NAS were 
correctly identified. The confusion matrix at SNR-40 (medium levels) shows 
a decrease in model performance with a drop-in TP for CAS 28/70 but main-
tained a good performance for DAS and NAS classes with 26/50 and 94/130, 
respectively. The increase in the GWN level to SNR-20 worsens the model’s 
performance in discriminating between the three, leading to the machine 
model losing its power to discriminate between sound classes with only 3/50 
and 10/130 for DAS and NAS correctly identified. The CAS class at the 
highest GWN was identified at 63/70 score. This showed that even though 
the model had a reasonable diagnostic accuracy for all three sound classes at 
no GWN level, also it showed robustness when GWN levels were increased 
to medium level (SNR-40), yet, class discrimination significantly worsened 
with GWN SNR-20 level, where all classes were mostly identified as NAS. 

From Fig. 5.2.47, it can be observed that scalogram-based Gradient 
Boosting ML model achieved an overall reasonable to good performance of 
precision to recall (PR) for NAS and DAS, with the worst performance 
observed for CAS as exemplified via PR-AUC. At medium levels of GWN 
of SNR-40 in all three sound classes, the DAS class recognition was the most 
significant impacted, followed closely by worst results in CAS class 
identification. Finally, once GWN is increased to SNR-20 levels, it negatively 
impacts CAS class with a lesser impact on DAS class sound recognition. The 
Gradient Boosting ML model shows some robustness in NAS class identifi-
cation; nonetheless, all three classes’ PR-AUC values drop significantly at 
high levels of GWN. 
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Fig. 5.2.47. PR curve showing significant impact (P = 0.000) of GWN  
on Gradient Boosting model’s ability to identify lung sounds correctly  

(from top to bottom) 
GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound. 
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Fig. 5.2.47. PR curve showing significant impact (P = 0.000) of GWN  
on Gradient Boosting model’s ability to identify lung sounds correctly  

(from top to bottom) 
GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound. 
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Fig. 5.2.48. ROC curve showing significant impact (P = 0.000) of GWN  
on Gradient Boosting model’s ability to identify lung sounds correctly  

(from top to bottom) 
GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound. 
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From Fig. 5.2.48, the impact of Gaussian white noise (GWN) levels on 
the true positive rate (TPR) compared to the false positive rate (FPR) in the 
receiver operating characteristic (ROC) curve can be observed for the spec-
trogram-based Gradient Boosting ML model. At no GWN level, the model 
shows a good performance for DAS and a reasonable performance for CAS 
sound classes identification, but only a very average performance for NAS 
class, as seen from the area under the ROC graph’s curve (ROC-AUC) values. 
The model performance drops significantly at medium levels of GWN (SNR-
40) for two sound groups: CAS and NAS. Finally, once GWN is increased to 
SNR-20, the performance of ML module to identify CAS, especially NAS, 
becomes abysmal, with DAS class identification showing robustness. The 
spectrogram-based Gradient Boosting shows good to reasonable performance 
at no GWN level, depending on the sound class. However, at GWN SNR-40 
level, the TPR, compared to FPR, dropped off for CAS and NAS identi-
fication quite significantly and it worsened at SNR-20 level. Therefore, even 
though the Gradient Boosting ML model shows average performance without 
ambient noise added, the performance varies between sound classes, and this 
model lacks robustness even at medium GWN levels. 

From Fig. 5.2.49, the impact of Gaussian white noise (GWN) is observed 
on true positive (TP), true negative (TN), false positive (FP) and false 
negative (FP) as seen in the scalogram-based Histgradient ML model’s con-
fusion matrix. At no GWN added levels, 34/70 CAS was identified correctly, 
with only a paltry 26/50 DAS class and 88/130 of NAS identified. The 
confusion matrix at SNR-40 (medium GWN levels) shows a decrease in the 
model's performance with a drop in TP for CAS and DAS classes, only 25/70 
and 12/50 correctly identified for both. The DAS sound class identification 
showed robustness with a score of 41/50. The increase in the GWN level to 
SNR-20 worsens the model’s performance in discriminating between the 
three sound classes, with DAS and NAS identification standing at 5/50 and 
14/130, respectively. The DAS class at the highest GWN was identified at 
62/70 score. This showed that the scalogram-based Histgradient ML model 
had a reasonable performance at no GWN, but then, once GWN was added, 
the model’s power to distinguish between sound groups was completely lost 
at the model classified all three classes mainly, falsely. This model lacks any 
robustness to GWN. 
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Fig. 5.2.49. Confusion metrics showing significant impact (P = 0.000) of 

GWN on Histgradient model’s ability to identify lung sounds correctly 
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS– continuous auscul-
tated sound, DAS – discontinuous auscultated sound. 

From Fig. 5.2.50, it can be observed that scalogram-based Histgradient 
ML model achieved an overall reasonable performance for precision to recall 
(PR) for NAS and DAS, with the worst performance observed for CAS as 
exemplified via area under the curve of PR graph (PR-AUC). At medium 
levels of GWN (SNR-40), all three sound classes are impacted more or less 
equally negatively. Finally, once GWN is increased to SNR-20 level, we see 
a significantly negative impact on CAS classes’ identification with a lesser 
impact on NAS class. The DAS class recognition shows some robustness 
from GWN SNR-40 to SNR-20 levels, but the PR-AUC values are quite poor. 
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Fig. 5.2.50. PR curve showing significant impact (P = 0.000) of GWN  

on Histgradient model’s ability to identify lung sounds correctly (from top 
to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound. 
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Fig. 5.2.50. PR curve showing significant impact (P = 0.000) of GWN  

on Histgradient model’s ability to identify lung sounds correctly (from top 
to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound. 
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Fig. 5.2.51. ROC curve showing significant impact (P = 0.000) of GWN  

on Histgradient model’s ability to identify lung sounds correctly (from top 
to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound. 
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characteristic (ROC) curve can be observed for the scalogram-based Histgra-
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significantly at medium levels of GWN (SNR-40) for two sound class groups: 
CAS and NAS. Finally, once GWN at SNR-20 is added, the model’s 
diagnostic accuracy performance of CAS, especially NAS, classes becomes 
abysmal, with DAS class identification showing robustness. Depending on 
the class, the scalogram-based Histgradient model shows good to reasonable 
performance at no GWN levels. However, at GWN SNR-40 level, the TPR 
drop off for CAS and NAS identification significantly and worsens at SNR-
20 level. Therefore, even though the model shows on average performance 
without ambient noise added, the performance varies between classes and 
lacks robustness even at medium GWN levels. 

 
Fig. 5.2.52. Confusion metrics showing significant impact (P = 0.000) of 

GWN on K-NN model’s ability to identify lung sounds correctly (from top to 
bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound, K-NN – K-Nearest Neighbors. 
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significantly at medium levels of GWN (SNR-40) for two sound class groups: 
CAS and NAS. Finally, once GWN at SNR-20 is added, the model’s 
diagnostic accuracy performance of CAS, especially NAS, classes becomes 
abysmal, with DAS class identification showing robustness. Depending on 
the class, the scalogram-based Histgradient model shows good to reasonable 
performance at no GWN levels. However, at GWN SNR-40 level, the TPR 
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From Fig. 5.2.52, the impact of Gaussian white noise is observed on true 
positive (TP), true negative (TN), false positive (FP) and false negative (FP), 
as seen in the scalogram-based K-Nearest Neighbors (K-NN) ML model’s 
confusion matrix. At no GWN level, 33/70 CAS was identified correctly, with 
only a paltry 8/50 of DAS class correctly identified, and 69/130 of NAS 
correctly identified. The confusion matrix at SNR-40 (medium GWN level) 
shows a decrease in the model’s performance with a drop in TP for CAS and 
NAS classes, with only 4/70 and 4/130, respectively, correctly identified for 
both. Yet, the DAS class identification showed robustness with a score of 
41/50. The increase in the GWN levels to SNR-20 more or less maintained 
this contrast between class identification with CAS and NAS identification 
standing at 6/70 and 2/130, respectively. The DAS class at the highest GWN 
was identified at 62/70 score. This showed that the scalogram-based K-NN 
model had a poor TP performance at no GWN, but then once GWN was 
added, the model’s power to distinguish between classes was utterly lost as 
the model classified all three sound classes mostly belonging to DAS class. 

From Fig. 5.2.53, it can be observed that scalogram-based K-Nearest 
Neighbors (K-NN) model achieved an overall poor performance of precision 
to recall (PR) for NAS, CAS, with the worst performance observed for DAS 
sound class, as exemplified via area under the curve (AUC) for PR graph (PR-
AUC). Medium levels of GWN (SNR-40) negatively affected all three sound 
classes’ recognition, as seen in the drop of the PR curve lines; this is espe-
cially true for DAS and CAS classes, with only a slight drop being observed 
in the NAS class. Finally, once GWN was increased to SNR-20 level, an 
extremely negative its impact on all three sound classes’ identification is 
observed. This is particularly true for the DAS class. The overall performance 
of the K-NN model from no GWN to highest levels of GWN (SNR-20) is 
very poor.  
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Fig. 5.2.53. PR curve showing significant impact (P = 0.000) of GWN  

on K-NN model’s ability to identify lung sounds correctly  
(from top to bottom).  

Note this model’s performance was extremely poor. GWN – Gaussian white noise, NAS – 
normal auscultated sound, CAS– continuous auscultated sound, DAS – discontinuous 
auscultated sound, K-NN – K-Nearest Neighbors. 
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Fig. 5.2.54. ROC curve showing significant impact (P = 0.000) of GWN 

on K-NN model’s ability to identify lung sounds correctly  
(from top to bottom) 

Note this model’s performance was extremely poor. GWN – Gaussian white noise, NAS – 
normal auscultated sound, CAS – continuous auscultated sound, DAS – discontinuous 
auscultated sound. 
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(TPR) as compared to the false positive rate (FPR) in the receiver operating 
characteristic (ROC) curve can be observed for the scalogram-based K-
Nearest Neighbors (K-NN) model. At no GWN added level, the model shows 
only reasonable performance for the CAS class identification, whilst DAS 
and NAS classes recognition show poor performance of this ML model, as 
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seen from the area under the curve of the ROC graph (ROC-AUC). Additio-
nally, the model performance drops significantly at medium levels of GWN 
(SNR-40) for all three sound groups identification. Finally, once GWN at 
SNR-20 is added to all three sound classes, the scalogram-based K-NN 
model’s performance worsen for all three classes. Therefore, this model 
performs poorly overall without GWN added and lacks robustness even at 
medium ambient noise levels, as seen with TPR and ROC-AUC value drop. 

 
Fig. 5.2.55. Confusion metrics showing significant impact (P = 0.000) of 

GWN on LightGBM model’s ability to identify lung sounds correctly (from 
top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound, LightGBM – Light Gradient Boosting 
Machine. 
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seen from the area under the curve of the ROC graph (ROC-AUC). Additio-
nally, the model performance drops significantly at medium levels of GWN 
(SNR-40) for all three sound groups identification. Finally, once GWN at 
SNR-20 is added to all three sound classes, the scalogram-based K-NN 
model’s performance worsen for all three classes. Therefore, this model 
performs poorly overall without GWN added and lacks robustness even at 
medium ambient noise levels, as seen with TPR and ROC-AUC value drop. 
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seen from the area under the curve of the ROC graph (ROC-AUC). Additio-
nally, the model performance drops significantly at medium levels of GWN 
(SNR-40) for all three sound groups identification. Finally, once GWN at 
SNR-20 is added to all three sound classes, the scalogram-based K-NN 
model’s performance worsen for all three classes. Therefore, this model 
performs poorly overall without GWN added and lacks robustness even at 
medium ambient noise levels, as seen with TPR and ROC-AUC value drop. 
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From Fig. 5.2.55, the impact of Gaussian white noise is observed on true 
positive (TP), true negative (TN), false positive (FP) and false negative (FP) 
as seen in the scalogram-based Light Gradient Boosting Machine (LightGBM) 
model’s confusion matrix. At no GWN level, 29/70 CAS was identified 
correctly, with 24/50 of DAS class correctly identified and 88/130 of NAS 
correctly identified. The confusion matrix at SNR-40 (medium GWN levels) 
shows a decrease in the model’s performance with a drop in TP for DAS and 
NAS classes, with only 13/50 and 60/130, respectively, correctly identified 
for both. The CAS identification showed robustness with a value of 40/70. 
The increase in the GWN level to SNR-20 exaggerated contrasts between 
class identification with DAS and NAS standing at only 4/50 and 18/130, 
respectively. This showed that the scalogram-based LightGBM model had a 
reasonable performance at no GWN, but once GWN was added first at SNR-
40, and later at SNR-20, the model lost its power to distinguish between TP 
and FP classes and with a tendency to classify all classes as CAS. 

From Fig. 5.2.56, it can be observed that the scalogram-based Light 
Gradient Boosting Machine (LightGBM) model achieved an overall reaso-
nable performance of precision to recall (PR) for NAS, DAS with slightly 
worse performance is observed for CAS as exemplified via the PR graph's 
area under the curve (PR-AUC). At medium levels of GWN (SNR-40) on all 
three sound classes, a drop of precision to recall is observed mainly for CAS 
and DAS classes, with the highest score at the medium level being scored by 
the NAS class. Finally, once GWN is increased to SNR-20 level, we see an 
extremely negative impact on all three sound classes’ recognition, especially 
CAS, performing the worst. Therefore, even though the scalogram-based 
LightGBM model achieves reasonable PR performance for no GWN level, 
the model lacks robustness even at medium levels of GWN. 
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seen from the area under the curve of the ROC graph (ROC-AUC). Additio-
nally, the model performance drops significantly at medium levels of GWN 
(SNR-40) for all three sound groups identification. Finally, once GWN at 
SNR-20 is added to all three sound classes, the scalogram-based K-NN 
model’s performance worsen for all three classes. Therefore, this model 
performs poorly overall without GWN added and lacks robustness even at 
medium ambient noise levels, as seen with TPR and ROC-AUC value drop. 

 
Fig. 5.2.55. Confusion metrics showing significant impact (P = 0.000) of 

GWN on LightGBM model’s ability to identify lung sounds correctly (from 
top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound, LightGBM – Light Gradient Boosting 
Machine. 
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Fig. 5.2.56. PR curve showing significant impact (P = 0.000) of GWN  

on LightGBM model’s ability to identify lung sounds correctly (from top to 
bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound, LightGBM – Light Gradient Boosting 
Machine. 
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Fig. 5.2.57. ROC curve showing significant impact (P = 0.000) of GWN  

on LightGBM model’s ability to identify lung sounds correctly (from top to 
bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound, LightGBM – Light Gradient Boosting 
Machine. 
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From Fig. 5.2.57, the impact of GWN levels on the true positive rate 
(TRP) as compared to the false positive rate (FPR) in the ROC curve can be 
observed for the scalogram-based Light Gradient Boosting Machine 
(LightGBM) model. At no GWN level, the model shows a very good 
performance from DAS, good performance for CAS and poor performance at 
NAS recognition, as seen from ROC-AUC (area) values. The model 
performance drops significantly at medium levels of GWN (SNR-40) for two 
sound groups: CAS and NAS. The drop is very slight for the DAS class. 
Finally, once GWN at SNR-20 is added, the LightGBM TRP rate drops for 
NAS, whilst DAS performance continues strong and CAS, though much 
weaker performance, is not impacted by increased levels of GWN as 
compared to medium GWN levels. Through DAS sound class recognition 
showed resilience and maintained very good TPR. However, the CAS shows 
poor performance, and it is even worse for NAS once GWN is increased to 
SNR-40 levels. Therefore, the scalogram-based LightGBM model has reaso-
nable performance at no GWN levels, with caveat variability depending on 
the group. Additionally, the performance becomes very poor even at medium 
levels of GWN for CAS and NAS classes. Therefore, the model lacks 
robustness. 

From Fig. 5.2.58, the impact of Gaussian white noise (GWN) is clearly 
observed on true positive (TP), true negative (TN), false positive (FP) and 
false negative (FP), as seen in the scalogram-based Logistic Regression ML 
model’s confusion matrix. At no GWN level, 38/70 CAS was identified 
correctly, with 26/50 of DAS class correctly identified and 78/130 of NAS 
correctly identified. The confusion matrix at SNR-40 (medium GWN level) 
shows an extremely sharp decrease in model performance with a drop in TP 
for DAS and NAS class, with zero correctly identified for both, but a perfect 
score for TP for NAS and 130/130. With the increase in the GWN levels to 
SNR-20, the exact same score was maintained for all three classes. This 
showed that the scalogram-based Logistic Regression ML model had a good 
performance at no GWN, but even at medium levels of GWN (SNR-40), had an 
extremely sharp drop in the diagnostic ability for CAS and NAS sounds with 
a strong bias towards falsely diagnosing these sounds as CAS. This shows the 
extremely poor robustness of this model to GWN ambient noise. 

 



117116 

From Fig. 5.2.57, the impact of GWN levels on the true positive rate 
(TRP) as compared to the false positive rate (FPR) in the ROC curve can be 
observed for the scalogram-based Light Gradient Boosting Machine 
(LightGBM) model. At no GWN level, the model shows a very good 
performance from DAS, good performance for CAS and poor performance at 
NAS recognition, as seen from ROC-AUC (area) values. The model 
performance drops significantly at medium levels of GWN (SNR-40) for two 
sound groups: CAS and NAS. The drop is very slight for the DAS class. 
Finally, once GWN at SNR-20 is added, the LightGBM TRP rate drops for 
NAS, whilst DAS performance continues strong and CAS, though much 
weaker performance, is not impacted by increased levels of GWN as 
compared to medium GWN levels. Through DAS sound class recognition 
showed resilience and maintained very good TPR. However, the CAS shows 
poor performance, and it is even worse for NAS once GWN is increased to 
SNR-40 levels. Therefore, the scalogram-based LightGBM model has reaso-
nable performance at no GWN levels, with caveat variability depending on 
the group. Additionally, the performance becomes very poor even at medium 
levels of GWN for CAS and NAS classes. Therefore, the model lacks 
robustness. 

From Fig. 5.2.58, the impact of Gaussian white noise (GWN) is clearly 
observed on true positive (TP), true negative (TN), false positive (FP) and 
false negative (FP), as seen in the scalogram-based Logistic Regression ML 
model’s confusion matrix. At no GWN level, 38/70 CAS was identified 
correctly, with 26/50 of DAS class correctly identified and 78/130 of NAS 
correctly identified. The confusion matrix at SNR-40 (medium GWN level) 
shows an extremely sharp decrease in model performance with a drop in TP 
for DAS and NAS class, with zero correctly identified for both, but a perfect 
score for TP for NAS and 130/130. With the increase in the GWN levels to 
SNR-20, the exact same score was maintained for all three classes. This 
showed that the scalogram-based Logistic Regression ML model had a good 
performance at no GWN, but even at medium levels of GWN (SNR-40), had an 
extremely sharp drop in the diagnostic ability for CAS and NAS sounds with 
a strong bias towards falsely diagnosing these sounds as CAS. This shows the 
extremely poor robustness of this model to GWN ambient noise. 
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Fig. 5.2.58. Confusion metrics showing significant impact (P = 0.000) 
of GWN on Logistic Regression model’s ability to identify lung sounds 

correctly (from top to bottom) 
GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound. 

From Fig. 5.2.59, it can be observed that scalogram-based Logistic 
Regression ML model achieved an overall reasonable performance of 
precision to recall (PR) for NAS, CAS, with the worst performance observed 
for DAS as exemplified via area under the curve for PR (PR-AUC) graph. At 
medium levels of GWN (SNR-40) on all three sound classes, a drop of 
precision to recall is observed mainly for DAS, whilst NAS shows the 
greatest robustness to medium levels of GWN. Finally, once GWN was 
increased to SNR-20 level, an extremely negative impact on all three sound 
classes’ recognition is observed. This is especially true for DAS class 
identification by the model. The scalogram-based LR ML model does not 
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seem to function properly, as three classes’ lines are spread apart with overall 
very low precision. 

 
Fig. 5.2.59. PR curve showing significant impact (P = 0.000) of GWN  
on Logistic Regression model’s ability to identify lung sounds correctly  

(from top to bottom) 
GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound. 
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seem to function properly, as three classes’ lines are spread apart with overall 
very low precision. 

 
Fig. 5.2.59. PR curve showing significant impact (P = 0.000) of GWN  
on Logistic Regression model’s ability to identify lung sounds correctly  

(from top to bottom) 
GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound. 
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Fig. 5.2.60. ROC curve showing significant impact (P = 0.000) of GWN  
on Logistic Regression model’s ability to identify lung sounds correctly  

(from top to bottom) 
GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound. 

From Fig. 5.2.60, the scalogram-based Logistic Regression model can 
observe the impact of Gaussian white noise (GWN) levels on the true positive 
rate (TPR) compared to the false positive rate (FPR) in the receiver operating 
characteristic (ROC) curve. At no GWN added level, the model shows a very 
good performance for DAS, good performance for CAS and poorer 
performance for NAS sound class identification, as seen from the area under 
the curve of the ROC graph’s (ROC-AUC) values. The model performance 
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drops significantly at medium levels of GWN (SNR-40) for all three classes. 
Finally, once GWN at SNR-20 level is added, the model’s performance 
worsens for all three sound classes. Therefore, the scalogram-based Logistic 
Regression model shows diagnostic power only at no GWN level, but with 
the caveat of having variability between all three sound classes, the TPR 
drops off even at medium levels of GWN and gets worse at higher levels. 
Hence, the model lacks any robustness to GWN. 

 
Fig. 5.2.61. Confusion metrics showing significant impact (P = 0.000) of 

GWN on MLP model’s ability to identify lung sounds correctly (from top to 
bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound, MLP classifier – Multilayer 
Perceptron. 
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drops significantly at medium levels of GWN (SNR-40) for all three classes. 
Finally, once GWN at SNR-20 level is added, the model’s performance 
worsens for all three sound classes. Therefore, the scalogram-based Logistic 
Regression model shows diagnostic power only at no GWN level, but with 
the caveat of having variability between all three sound classes, the TPR 
drops off even at medium levels of GWN and gets worse at higher levels. 
Hence, the model lacks any robustness to GWN. 

 
Fig. 5.2.61. Confusion metrics showing significant impact (P = 0.000) of 

GWN on MLP model’s ability to identify lung sounds correctly (from top to 
bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound, MLP classifier – Multilayer 
Perceptron. 

  

Scalogram confusion matrix – 

A
ct

ua
l

Predicted

CAS

DAS

NAS

CAS DAS NAS

120

100

80

60

40

20

0

3 0 66

3 0 46

5 0 124 

Scalogram confusion matrix – Scalogram confusion matrix – 

A
ct

ua
l

A
ct

ua
l

Predicted Predicted

CAS

DAS

NAS

CAS

DAS

NAS

CAS CASDAS DASNAS NAS

80

70

60

50

40

30

20

10

120

100

80

60

40

20

0

34 5 29

4 22 22

29 18 81

1 0 68

0 0 49

3 1 125



121120 

drops significantly at medium levels of GWN (SNR-40) for all three classes. 
Finally, once GWN at SNR-20 level is added, the model’s performance 
worsens for all three sound classes. Therefore, the scalogram-based Logistic 
Regression model shows diagnostic power only at no GWN level, but with 
the caveat of having variability between all three sound classes, the TPR 
drops off even at medium levels of GWN and gets worse at higher levels. 
Hence, the model lacks any robustness to GWN. 

 
Fig. 5.2.61. Confusion metrics showing significant impact (P = 0.000) of 

GWN on MLP model’s ability to identify lung sounds correctly (from top to 
bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound, MLP classifier – Multilayer 
Perceptron. 
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From Fig. 5.2.61, the impact of Gaussian white noise (GWN) is clearly 
observed on true positive (TP), true negative (TN), false positive (FP) and 
false negative (FP), as seen in the scalogram-based Multilayer Perceptron 
(MLP) model’s confusion matrix. At no GWN level, 34/70 CAS was 
identified correctly, 22/50 of the DAS class was correctly identified, and 
81/130 of the NAS were correctly identified. The confusion matrix at SNR-
40 (medium GWN levels) shows a sharp decrease in the model performance 
with a drop in TP with only 1/70 correctly for the CAS class and zero 
correctly identified for DAS class, but a good score for TP for NAS and 
125/130. The increase in the GWN levels to SNR-20 level continued DAS 
and CAS poor classification performance with 3/70 and 0/50, with only NAS 
scoring highly with 124/130. This showed that the scalogram-based MLP 
model had a good performance at no GWN level, but even at medium levels 
of GWN (SNR-40), it had a lack of diagnostic ability for CAS and DAS 
sounds with a strong bias towards falsely diagnosing these sounds as NAS. 

From Fig. 5.2.62, it can be observed, that the scalogram-based Multilayer 
Perceptron (MLP) model achieved an overall reasonable to poor performance 
of precision to recall (PR) for NAS, CAS classes, with the worst performance 
observed for DAS sound class, as exemplified via area under the curve for 
PR graph (PR-AUC). At medium levels of GWN (SNR-40) on all three, a 
drop of precision to recall. The worst performance by the MLP model is 
observed for DAS class, whilst NAS class identification shows reasonable 
robustness to medium level of GWN. Finally, once GWN is increased to 
SNR-20 level, we see a significantly negative impact on all three sound 
classes’ recognition, especially DAS and CAS identification. Therefore, at 
the higher GWN levels, the model stops being an effective diagnostic tool. 
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Fig. 5.2.62. PR curve showing significant impact (P = 0.000) of GWN  

on MLP model’s ability to identify lung sounds correctly  
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous 
auscultated sound, DAS – discontinuous auscultated sound, MLP classifier – Multilayer 
Perceptron. 
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Fig. 5.2.62. PR curve showing significant impact (P = 0.000) of GWN  

on MLP model’s ability to identify lung sounds correctly  
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous 
auscultated sound, DAS – discontinuous auscultated sound, MLP classifier – Multilayer 
Perceptron. 
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Fig. 5.2.63. ROC curve showing significant impact (P = 0.000) of GWN  

on MLP model’s ability to identify lung sounds correctly  
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS– continuous auscul-
tated sound, DAS – discontinuous auscultated sound, MLP classifier – Multilayer 
Perceptron. 

From Fig. 5.2.63, the impact of GWN levels on the true positive rate 
(TPR) as compared to the false positive rate in the receiver operating 
characteristic (ROC) curve can be observed for the scalogram-based Multi-
layer Perceptron (MLP) model. At no GWN level, the model shows a good 
performance for DAS and CAS classes but poorer performance for NAS class 
recognition, as seen from the ROC graph’s area under the curve (ROC-AUC) 
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values. The model performance drops significantly at medium level of GWN 
(SNR-40) for all three sound classes. Finally, once GWN at SNR-20 is added, 
the performance becomes even worse for all three sound classes. Therefore, 
the scalogram-based MLP model shows reasonable diagnostic power only at 
no GWN level. However, the TRP drops off even at medium GWN levels 
and worsens at higher levels. Hence, the model lacks any robustness to 
ambient noise. 

 
Fig. 5.2.64. Confusion metrics showing significant impact (P = 0.000) of 
GWN on Random Forest model’s ability to identify lung sounds correctly 

(from top to bottom) 
GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound. 
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values. The model performance drops significantly at medium level of GWN 
(SNR-40) for all three sound classes. Finally, once GWN at SNR-20 is added, 
the performance becomes even worse for all three sound classes. Therefore, 
the scalogram-based MLP model shows reasonable diagnostic power only at 
no GWN level. However, the TRP drops off even at medium GWN levels 
and worsens at higher levels. Hence, the model lacks any robustness to 
ambient noise. 
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From Fig. 5.2.64, the impact of Gaussian white noise is clearly observed 
on true positive (TP), true negative (TN), false positive (FP) and false nega-
tive (FP) as seen in the scalogram-based Random Forest ML model’s 
confusion matrix. At no GWN level, 31/70 CAS was identified correctly, 
16/50 of the DAS class was correctly identified, and 106/130 of the NAS 
were correctly identified. The confusion matrix at SNR-40 (medium GWN 
levels) shows an extremely sharp decrease of the model performance with a 
slight drop in TP for the NAS class with 95/130 correctly identified, whilst 
showing an extremely sharp drop in performance for DAS identification, with 
3/50 score and CAS 19/70 score. The increase of the GWN levels to SNR-20 
level shows a continued significant drop in the model’s performance for DAS 
and NAS class sound identification with 0/50 and 21/130, respectively. Only 
the CAS class exhibiting a good TP score of 60/70. Overall, the scalogram-
based Random Forest ML model showed very poor performance for DAS and 
NAS sound classes recognition and poor robustness to GWN. The model 
misdiagnosed DAS and CAS as NAS at GWN SNR-40. Whilst at GWN 
SNR-20, the bias turned towards misdiagnosing NAS and DAS as CAS 
classes. This showed the model's limited diagnostic ability, poor performance 
under GWN conditions, and unreliability as diagnostic tool. 

From Fig. 5.2.65, it can be observed that the scalogram-based Random 
Forest model achieved an overall reasonable performance of precision to 
recall (PR) for NAS, CAS with slightly worse performance observed for DAS 
sound class identification, as exemplified via area under the curve for PR 
(PR-AUC) graph. At medium levels of GWN (SNR-40) on all three sound 
classes, a drop of precision to recall is observed mainly for DAS class, whilst 
NAS shows the greatest robustness to medium levels of GWN. Finally, once 
GWN is increased to SNR-20 (highest GWN level), we see a significantly 
negative impact on all three sound classes identification, especially DAS, 
whilst NAS continues to show the greatest robustness through all levels of 
GWN. 
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Fig. 5.2.65. PR curve showing significant impact (P = 0.000) of GWN  

on Random Forest model’s ability to identify lung sounds correctly  
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound. 
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Fig. 5.2.65. PR curve showing significant impact (P = 0.000) of GWN  

on Random Forest model’s ability to identify lung sounds correctly  
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound. 
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Fig. 5.2.66. ROC curve showing significant impact (P = 0.000) of GWN  

on Random Forest model’s ability to identify lung sounds correctly  
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound. 

From Fig. 5.2.66, the impact of GWN levels on the true positive rate 
(TPR) as compared to the false positive rate in the ROC curve can be obser-
ved for the scalogram-based Random Forest ML model. At no GWN level, 
the model shows a good performance for CAS class, above average for DAS 
class and poor performance for CAS class identification, as seen from ROC-
AUC (area) values. The model performance drops significantly at medium 
levels of GWN (SNR-40) for all three sound classes, with some robustness 
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shown for the DAS class. Finally, once GWN at SNR-20 level is added, the 
Random Forest model’s performance worsens for all three sound classes 
recognition. Therefore, the scalogram-based Random Forest model shows 
diagnostic reasonable power only at no GWN level, with some robustness 
shown at medium GWN levels, but only for the DAS sound class. Once the 
GWN is increased to the highest level, the model loses its ability to classify 
any of the three sound classes as it lacks robustness to the highest GWN 
levels. 

 
Fig. 5.2.67. Confusion metrics showing significant impact (P = 0.000)  

of GWN on SVM model’s ability to identify lung sounds correctly  
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound, SVM – Support Vector Machines. 
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From Fig. 5.2.67, the impact of Gaussian white noise is observed on true 
positive (TP), true negative (TN), false positive (FP) and false negative (FP) 
scores in the scalogram-based SVM model’s confusion matrix. At no GWN 
levels, 14/70 CAS was identified correctly, 15/50 of the DAS class was 
correctly identified, and 110/130 of the NAS were correctly identified. The 
confusion matrix at SNR-40 (medium GWN level) shows a highly sharp 
decrease in the model’s performance, the drop in TP for the NAS and DAS 
classes with extremely low with scores of 1/130 and 0/50, respectively. The 
increase in the GWN to SNR-20 level, shown a continued significant drop in 
the model’s ability to identify DAS and NAS sound classes with 0/50 and 
0/130, respectively, while only the CAS class maintained a TP score of 70/70. 
The SVM model overall showed abysmal performance at all three sound 
classes’ identification, poor robustness to GWN levels and bias towards 
mislabelling sound classes as CAS at highest GWN levels. 

From Fig. 5.2.68, it can be observed that scalogram-based Support 
Vector Machines (SVM) achieved an overall reasonable to poor performance 
of precision to recall (PR) for NAS, CAS identification with slightly worse 
performance is observed for DAS as exemplified by the area under the curve 
(AUC) for PR graph (PR-AUC). At medium levels of GWN (SNR-40) on all 
three classes precision to recall is reduced, especially for DAS class 
identification, whilst NAS shows the greatest robustness to medium levels of 
GWN. Finally, once GWN is increased to SNR-20 levels, we see a signi-
ficantly negative impact on SVM models’ ability to identify correctly all three 
classes, especially DAS. The scalogram based SVM model shows poor 
robustness at medium levels of GWN and complete loss to discriminated 
three classes of lung sounds at the highest levels of GWN. 
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Fig. 5.2.68. PR curve showing significant impact (P = 0.000) of GWN on 
SVM model’s ability to identify lung sounds correctly (from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound, SVM – Support Vector Machines. 
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Fig. 5.2.68. PR curve showing significant impact (P = 0.000) of GWN on 
SVM model’s ability to identify lung sounds correctly (from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound, SVM – Support Vector Machines. 
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Fig. 5.2.69. ROC curve showing significant impact (P = 0.000) of GWN on 
SVM model’s ability to identify lung sounds correctly (from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound, SVM – Support Vector Machines. 
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with SNR-20 level is added, the performance becomes random (all the lines 
for all three classes adhere closely to the dashed random line). Therefore, the 
scalogram-based SVM model shows reasonable diagnostic power to identify 
lung sounds only at no GWN level, but lacks any robustness, even at medium 
level of GWN, as the model loses its capability to predict any of the three 
sound classes correctly. 

 
Fig. 5.2.70. Confusion metrics showing significant impact (P = 0.000) of 

GWN on XGBoost model’s ability to identify lung sounds correctly  
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound, XGBoost – Extreme Gradient Boosting 
classifier. 
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with SNR-20 level is added, the performance becomes random (all the lines 
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From Fig. 5.2.70, the impact of Gaussian white noise is clearly observed 
on true positive (TP), true negative (TN), false positive (FP) and false nega-
tive (FP) as seen in the scalogram-based XGBoost model’s confusion matrix. 
At no GWN added levels, 31/70 CAS was identified correctly, 28/50 of the 
DAS class was correctly identified, and 90/130 of the NAS were correctly 
identified. The confusion matrix at SNR-40 (medium levels) shows a sharp 
decrease in performance of the model performance with a sharp drop in TP 
for the NAS class with only 48/130 correctly identified, whilst showing 
improved performance for DAS with 38/50 correctly and a slight decrease in 
CAS with 22/70 score. The increase in the GWN levels of SNR-20 saw a 
continued significant drop in the model’s performance for DAS and NAS 
class sound identification with 0/50 and 6/130, respectively. Only the CAS 
class maintaining an extremely good TP score of 66/70. Overall, the scalo-
gram-based XGBoost ML model showed reasonable performance for identi-
fying DAS and CAS sounds at no GWN added levels, with some robustness 
to medium GWN levels but a bias towards mislabelling sound as NAS at 
highest ambient noise level. 

From Fig. 5.2.71, it can be observed that scalogram-based XGBoost 
model achieved an overall reasonable performance except for one sound 
class. The precision to recall (PR) graph shows reasonable performance of 
the model in identifying NAS and DAS classes with worse performance 
observed for DAS, as exemplified via PR area under the curve (PR-AUC) 
scores. At medium level of GWN (SNR-40) recall scores for all three sound 
classes are negatively impacted. Only NAS shows the greatest robustness to 
medium level of GWN. Finally, once GWN is increased to SNR-20 level, we 
see an extremely negative impact on all three classes, especially CAS, 
followed by DAS, whilst NAS continues to show robustness to extreme noise. 
Nonetheless, once GWN levels are increased to SNR-20, the precision levels 
drop significantly for CAS and DAS lung sound classes, meaning that the 
model becomes useless at the highest GWN. 
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with SNR-20 level is added, the performance becomes random (all the lines 
for all three classes adhere closely to the dashed random line). Therefore, the 
scalogram-based SVM model shows reasonable diagnostic power to identify 
lung sounds only at no GWN level, but lacks any robustness, even at medium 
level of GWN, as the model loses its capability to predict any of the three 
sound classes correctly. 
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Fig. 5.2.71. PR curve showing significant impact (P = 0.000) of GWN  

on XGBoost model’s ability to identify lung sounds correctly  
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound, XGBoost – Extreme Gradient Boosting 
classifier. 
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Fig. 5.2.71. PR curve showing significant impact (P = 0.000) of GWN  

on XGBoost model’s ability to identify lung sounds correctly  
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound, XGBoost – Extreme Gradient Boosting 
classifier. 
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Fig. 5.2.72. ROC curve showing significant impact (P = 0.000) of GWN  

on XGBoost model’s ability to identify lung sounds correctly  
(from top to bottom) 

GWN – Gaussian white noise, NAS – normal auscultated sound, CAS – continuous auscul-
tated sound, DAS – discontinuous auscultated sound, XGBoost – Extreme Gradient Boosting 
classifier. 
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for two classes: CAS and NAS. XGBoost shows strong robustness for the 
DAS class at medium level of GWN. Finally, once GWN is increased to 
SNR-20 level, the model loses its discrimination power to identify sound 
classes correctly, with greatest negative impact on ML model’s identification 
of NAS sound class. Therefore, the scalogram-based XGBoost model is only 
viable at no GWN level, and higher levels of GWN (SNR-20) makes the 
model unviable to distinguish all three classes. 

Table 5.2.1. Twelve-spectrogram based models’ performance according to 
ROC-AUC scores 

Spectrogram-based 
model 

ROC-AUC, 
median (IQR) 

Test 
statistic 

Degrees of 
freedom P-value 

AdaBoost 0.800 (0.689–0.853) 

803 11 < 0.001 

CatBoost 0.857 (0.764–0.880) 
Extra Trees 0.820 (0.691–0.859) 
Gradient Boosting 0.874 (0.772–0.897) 
Histgradient 0.865 (0.802–0.894) 
K-NN 0.751 (0.638–0.753) 
LightGBM 0.856 (0.782–0.879) 
Logistic Regression 0.863 (0.781–0.876) 
MLP 0.863 (0.786–0.902) 
Random Forest 0.833 (0.694–0.873) 
SVM 0.836 (0.746–0.853) 
XGBoost 0.871 (0.782–0.895) 

The best-performing spectrogram-based algorithms, according to the median performance, 
were all boosting models: Gradient Boosting, XGBoost, Histgradient. Histgradient had second 
highest medium, but narrower interquartile range with highest Q1 out of the top three models. 
IQR – interquartile range. 
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Table 5.2.2. Twelve-scalogram based models’ performance according to 
ROC-AUC scores 

Scalogram-based 
model 

ROC-AUC,  
median (IQR) 

Test 
statistic 

Degrees of 
freedom P-value 

AdaBoost 0.735 (0.658–0.847) 

574 11 < 0.001 

CatBoost 0.794 (0.679–0.881) 
Extra Trees 0.746 (0.590–0.788) 
Gradient Boosting 0.752 (0.685–0.867) 
Histgradient 0.733 (0.671–0.850) 
K-NN 0.590 (0.528–0.658) 
LightGBM 0.732 (0.673–0.847) 
Logistic Regression 0.756 (0.671–0.814) 
MLP 0.741 (0.590–0.788) 
Random Forest 0.768 (0.635–0.808) 
SVM 0.740 (0.658–0.810) 
XGBoost 0.727 (0.659–0.859) 

The best-performing scalogram-based algorithms according to the median performance were 
one boosting, one tree based and one classical model, they were in the upper quartile of 
performance: CatBoost, Random Forest, and Logistic Regression. IQR – interquartile range. 
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Table 5.2.3. Twelve spectrogram-based models’ compared to twelve scalo-
gram-based models’ performance according to ROC-AUC scores 

Spectrogram of 12 ML 
model, median (IQR) 

Scalogram of 12 ML 
model, median (IQR) Test statistic P-value 

0.837 (0.638–0.902) 0.735 (0.528–0.881) 583275 < 0.001 
Wilcoxon Test shows significant difference between 12 ML models based on spectrogram 
and scalogram, with spectrogram-based models having a much higher median values as 
compared to scalograms-based models. IQR – Interquartile range. 

5.3. Medical Faculty students’ performance 

In total 45 medical students attempted to learn three classes of lung 
sounds, over a period of 4 days and then performed a test under three levels 
of GWN noise (no added noise, GWN SNR-40 and GWN SNR-20).  

The models all tested for overall impact of GWN on their performance 
via Friedman test and post hoc analysis. 

From Fig. 5.3.1 the impact of different levels of Gaussian white noise 
(GWN) can be observed on three classes of lung sound’s identification. 

The noise levels are expressed in signal-to-noise ratio (SNR) from lowest 
levels (no GWN), medium (SNR-40) and to highest levels (SNR-20). Fried-
man test showed ability to identify NAS and DAS significantly varied 
(P = 0.042, 0.021, respectively) at the three levels of GWN, whilst no signi-
ficant impact of GWN levels on CAS sounds were observed (P = 0.311). 

Post hoc comparison was performed to evaluate the influence of the three 
levels of GWN on the ability to recognise NAS and DAS sound classes. 

Statistically significant differences were found in lung sound recognition 
between no GWN and SNR-40 for NAS, between no GWN and SNR-40 and 
between SNR-40 and SNR-20 for DAS (P = 0.016, 0.013, 0.023, respecti-
vely). 
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Fig. 5.3.1. Medical students’ exam scores for three classes of lung sounds 

under different levels of GWN. Impact of three levels of GWN on the ability 
for students to recognise continuous (CAS), discontinuous (DAS) and 

normal (NAS) lung sound classes. 
GWN – Gaussian white noise, SNR – signal to noise ratio, NAS – normal auscultated sound, 
DAS – discontinuous auscultated sound, CAS – continuous auscultated sound. 

5.4. Comparison of best ML model’s performance against Medical 
Faculty students’ performance under different levels of GWN 

Finally, the TN, TP, FN, FP values of students’ scores were used to 
calculate MCC, specificity and sensitivity for each class of the sound under 
each level of GWN (no GWN, GWN SNR-40, GWN SNR-20). 

The results were used to plot a box and whisker graph and Friedman test 
with post hoc analysis was performed (Fig. 5.4.1 to Fig. 5.4.3). 
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From Fig. 5.4.1 the impact of GWN on machine learning model and 
Medical Faculty students’ diagnostic accuracy can be observed, by the com-
parison of Matthews correlation coefficient (MCC) score. 

Students performed similarly to the spectrogram-based Histgradient 
model in the no GWN added condition, as no significant differences between 
the two study groups (MFS vs. ML) were observed for the two sound classes 
identification rates: NAS and CAS (P > 0.05). However, there was a 
statistically significant difference between the two study groups for the DAS 
class of lung sound identification (P = 0.002). The ML models’ MCC scores 
of 0.471 (0.415 to 0.543), 0.587 (0.522 to 0.654), 0.485 (0.422 to 0.552) vs. 
MFS 0.500 (–0.250 to 1.000), 0.500 (0.000 to 1.00), 0.500 (–0.250 to 1.000) 
for NAS, CAS, DAS, respectively. The ML model showed superior MCC 
scores for DAS class identification under no GWN conditions. 

With GWN at SNR-40 level, there was statistical significance between 
all three sound groups: NAS, CAS, DAS (P = 0.035, P = 0.002, P = 0.000) 
with ML scores of 0.341 (0.288 to 0.422), 0.256 (0.180 to 0.374), 0.557 
(0.491 to 0.621) vs. MFS 0.500 (–0.250 to 1.000), 0.500 (0.000 to 1.000), 
0.000 (–0.250 to 1.000 for NAS, CAS, DAS respectively. The MF students 
showed superior performance in identifying NAS and CAS classes whilst ML 
model outperformed human subjects under SNR-40 for DAS sound class 
recognition. 

Whist at GWN SNR-20 level, students showed statistically significantly 
better results for all classes of sounds recognition, than Histgradient 
spectrogram-based ML model (P = 0.000 for NAS and CAS classes and P = 
0.009 for DAS class) with ML scores of 0.116 (–0.013 to 0.173), 0.001  
(–0.095 to 0.255), 0.000 (–0.045 to 0.067) vs. 0.500 (–0.250 to 1.000), 0.500 
(0.000 to 1.000), 0.500 (–0.250 to 1.000) for NAS, CAS, DAS respectively. 
Therefore, at the highest levels, the MMC scores of the MFS group were 
significantly higher than those of the ML Histgradient model, strongly 
indicating human subjects’ robustness to the highest GWN levels compared 
to the ML model. 
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From Fig. 5.4.2 the impact on machine learning (ML) model and medical 
faculty students (MFS) of different levels of Gaussian white noise (GWN) 
can specificity be observed on three classes of lung sounds. 

In the no GWN added condition, the specificity distributions of the 
spectrogram Histogram-based Gradient Boosting Classification Tree machi-
ne learning (ML) model and the students scores were not significantly diffe-
rent for NAS and CAS (P > 0.05 for both classes), with ML model specifi-
cities of 0.471 (0.415 to 0.543) and 0.587 (0.522 to 0.654) for NAS and CAS, 
respectively, compared to medical faculty students’ (MFS) specificities of 
0.500 (–0.250 to 1.000) and 0.500 (0.000 to 1.000) for the same classes. 
However, for DAS, the ML model showed significantly higher specificity 
than the students’ scores (P = 0.000), with ML specificity of 0.485 (0.422 to 
0.552) compared to specificity of 0.500 (–0.250 to 1.000). 

At GWN SNR-40, no significant differences were observed between the 
two study groups for CAS class identification (P > 0.05). However, 
significant differences were found between the NAS and DAS classes (P = 
0.000, P = 0.024 ), with Histgradient ML model scores for DAS class identi-
fication being higher than those of MFS. However, the MFS group identified 
better NAS class sounds. The ML model showed specificities of 0.341 (0.288 
to 0.422), 0.256 (0.180 to 0.374), and 0.557 (0.491 to 0.621) for NAS, CAS, 
and DAS, respectively, while the MFS had specificities of 0.500 (–0.250 to 
1.000), 0.500 (0.000 to 1.000), and 0.000 (–0.250 to 1.000) for the same 
classes. 

In contrast, at GWN SNR-20, the MFS demonstrated statistically signifi-
cantly better specificity results than the spectrogram-based Histgradient ML 
model for all sound classes (P = 0.000 for all classes). This ML model 
specificities were 0.116 (–0.013 to 0.173), 0.001 (–0.095 to 0.255), and 0.000 
(–0.045 to 0.067) for NAS, CAS, and DAS, respectively, compared to the 
MFS specificities of 0.500 (–0.250 to 1.000), 0.500 (0.000 to 1.000), and 
0.500 (–0.250 to 1.000) for the same classes. Therefore, at the highest levels 
of GWN, the MFS study group outperformed in specificity scores for NAS 
and CAS classes. At the same time, the ML Histgradient model maintained 
its statistically significant advantage for DAS class identification over 
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From Fig. 5.4.3 The impact of different levels of Gaussian white noise 

(GWN) on machine learning (ML) models and medical faculty students’ 

(MFS) sensitivity scores. 

At no GWN added condition, the sensitivity scores of the spectrogram-

based Histgradient ML model's and the medical faculty students’ (MFS) 

scores do not significantly different for DAS class identification (P > 0.05). 

However, that was statistically significant difference between study groups 

in identifying NAS and CAS class of lung sounds (P = 0.030 and P = 0.000, 

respectively). The ML sensitivities scores were as follows: 0.471 (0.415 to 

0.543), 0.587 (0.522 to 0.654), and 0.485 (0.422 to 0.552) for NAS, CAS, and 

DAS, respectively, compared to MFS sensitivities of 0.500 (–0.250 to 1.000), 

0.500 (0.000 to 1.000), and 0.500 (–0.250 to 1.000) for the same classes. 

Therefore, data analysis shows that ML model hold statistically significant 

advantage at no GWN levels for NAS and CAS classes and evenly matches 

MFS for DAS class. 

At GWN SNR-40, no significant differences were observed for DAS 

class sensitivity median scores (P > 0.05), but significant differences were 

found for NAS and CAS classes (P = 0.000 for both groups), with the Hist-

gradient ML model having higher sensitivity than MFS for the NAS class and 

lower for the CAS class of lung sounds. The ML model showed sensitivities 

of 0.341 (0.288 to 0.422), 0.256 (0.180 to 0.374), and 0.557 (0.491 to 0.621) 

for NAS, CAS, and DAS, respectively, while the MFS scores had sensitivities 

of 0.500 (–0.250 to 1.000), 0.500 (0.000 to 1.000), and 0.000 (–0.250 to 

1.000) for the same classes. 

At GWN SNR-20, both study groups (ML Histgradient model and MFS) 

were not statistically different in their sensitivity while identifying NAS and 

CAS classes of lung sounds (P > 0.05 for both). However, the sensitivity of 

spectrogram-based Histgradient ML model was statistically lower for DAS 

class than that of MFS under the highest GWN level (P = 0.000). The ML 

model sensitivities were 0.116 (–0.013 to 0.173), 0.001 (–0.095 to 0.255), 

and 0.000 (–0.045 to 0.067) for NAS, CAS, and DAS, respectively, compared 

to the MFS sensitivities of 0.500 (–0.250 to 1.000), 0.500 (0.000 to 1.000), 

and 0.500 (–0.250 to 1.000) for the same classes.  

Therefore, the ML model performs better in sensitivity at no GWN levels 

and has some robustness at medium GWN levels. However, at the highest 

levels of GWN (SNR-20), human subjects catch up with the ML model and 

outperform it for DAS class lung sounds. 
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6. DISCUSSION 

The research was set up to explore and better understand the integration 

of machine learning tools as an AI-based decision assistant for healthcare 

workers under different ambient noise levels. 

The research had two main parts: training machine models and medical 

students, and comparing their sensitivity, specificity and MCC scores under 

three levels of GWN for both groups. The project was set up to achieve these 

goals with four objectives in mind. These objectives were used to create a 

methodology where medical students and machine learning models were 

trained and assessed to identify three lung sound classes under three levels of 

GWN. Additionally, spectrogram and scalogram-based models were 

compared for their performance under different GWN levels for three lung 

sound classes identification. The evaluation of the models was performed 

using the following assessment metrics: ROC-AUC and MCC and supported 

by PR curve and confusion matrix, to evaluated GWN impact at SNR-40 and 

SNR-20 levels on three classes of lungs sounds identification (NAS, CAS, 

DAS), and finally to compare the ability of machine learning models and 

medical students to identify three classes of lung sounds under three different 

levels of GWN. 

During the project, 124 patients were auscultated, and 108 patients were 

selected for the research project. 52 medical students rolled into auscultation 

training and assessment under GWN conditions, of which 45 completed the 

study fully. 

A proprietary website with a training and assessment section was created 

for students. 

First, ML models were trained using extracted features from scalograms 

and spectrograms. The research training ran 30 times, with average data used 

to create a confusion matrix, PR-AUC, ROC-AUC and calculate MCC. 

Statistical significance between models was evaluated using Friedman’s test 

with a post hoc analysis. 

The models were evaluated based on the overall performance of the three 

classes of lung sound detection under no GWN conditions (the best 

conditions for the model). ROC-AUC was the primary criteria. Secondary 

criteria were that the IQR range would be narrow, with the lower quartile as 

high as possible and the highest possible median score. The evaluation of 

spectrogram showed GB, XGBoost, MLP, Histgradient and LR models being 

the top 5 models, with Histgradient being in top 3 in median score and having 

the best IQR range. 
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The middle performing spectrogram-based ML models were CatBoost, 

LightGBM, followed by similarly performing SVM, Random Forest, Extra 

Trees. Finaly the worst two models were AdaBoost and K-NN, from which 

two K-NN had the worst performance out of the two. 

The Friedman test results indicate statistically significant differences 

among the evaluated algorithms. Post-hoc analysis was applied with an 

adjusted P-value set at less than 0.05. 

In summary, the statistical analysis confirms that GB, Histgradient and 

XGBoost are the top performers in this evaluation, while K-NN and 

AdaBoost results were underwhelming.  

The study results concur with past research, showing very strong 

performance by Hisgradient and XBBoost ML models and emphasize the 

importance of selecting the right model. Previous research has shown that 

XGBoost can outperform other models in respiratory sound detection. [127]. 

The other research shows that XGBoost and Histgradient outperforming 

MLP, RF, AdaBoost [128]. Additionally, this research adds to the body of 

scientific knowledge by comparing statistically spectrogram-based 12 

models’ performance for lung class recognition.  

Whilst the story was slightly different for scalogram-based ML models, 

especially concerning the question of best performing ones. The training and 

assessment of scalogram-based models showed that there was a significant 

difference between the 12 ML models, and CatBoost model came out on top 

as best performing ML model, significantly better than several other models, 

for instance, better than LightGBM, SVM, Logistic Regression (P = 0.001). 

Random Forest model was also a strong, but not always significantly 

better. XGBoost took third place as a good, but slightly behind RF and 

CatBoost. LightGBM was similar to XGBoost with no significant difference, 

but slightly weaker performance. To worst performing models were SVM and 

Logistic Regression and were significantly weaker than top ones. SVM and 

Logistic Regression performed significantly worse than the tree-based 

models (CatBoost, Random Forest and XGBoost).  

Though there are no direct studies comparing CatBoost and other ML 

models for lung sounds under ambient noise conditions, yet, interesting 

glimpses can be acquired by looking at other types of studies, which used this 

ML model.  

For instance, Qin Yifan study shows that the best performing model was 

CatBoost in predicting diabetes through lifestyle, followed by XGBoost, 

Random Forest (RF), Logistic Regression (LR), and Support Vector 

Machines (SVM) [129]. These findings align somewhat with our study on 

ML scalogram-based model performance, though the type of predictive 

model being built was very different.  
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The study by Zaman R. Syed had more similar research topic, where 

voice recordings used to predict biometric features. This research showed that 

CatBoost ML model performs best among all in predicting human biometric 

information from voice timbre with 96.4% test accuracy, compared to 

Random Forest and XGBoost. On the other hand, Random Forest performs 

best for predicting age, among all ML models used, with 70.4% test accuracy. 

For emotion prediction, XGBoost performs best with 66.1% test accuracy 

[130]. This research emphasis, again, on how models’ accuracy varies 

depending on type of data being classified.  

Hence, we can see that each ML model has its advantages and 

disadvantages, furthermore, only by running experiments empirically and 

comparing them, we can deduce an optimal model for pulmonary lung sound 

recognition.  

The 12 spectrogram-based ML models were compared to their 12 

scalogram-based counterparts. The results showed a significant difference 

between the two groups, with spectrogram-based models outperforming their 

equivalent counterparts. 

This indeed was a bit of surprise as scalograms, technically, should 

preserve more information then spectrograms and, in theory, perform better 

even in noisy conditions [131].  

The phenomena could be explained by two main points. First, the dataset 

might not have been large enough. The article by Pratham N. Soni stated that 

limited datasets could lead to overfitting in small datasets due to their high 

dimensional feature space [132].  

The other issue with scalograms is that they require more finetuning to 

get the most out of them. This topic has been explored by Addison S. Paul in 

2002 book [133]. Therefore, the limited conclusion can only be drawn that 

due to relative spectrogram simplicity, models adaptability and limited 

datasets spectrogram-based models were significancy better in recognising 

lungs sounds.  

The second stage of the study was to assess the human subjects’ ability 

to recognise different class of lung sound at GWN environment, trained on 

the same data. 

Medical students were chosen for the study, as auscultation training 

typically begins with them, whilst them being motivated to learn lung 

auscultation skills, as part of development, towards becoming physicians. 

Younger subjects were also less likely to experience hearing impairments 

[134]. Furthermore, confounding variables such as age, subjects’ 

environment and training hours could be more easily controlled. 

The study enrolled 52 LMSU second- and third-year students and after 

training for 4 days students took an exam under three levels of GWN. 
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The results showed that GWN had a statistically significant impact on 

the ability of subjects to recognise specific classes of lung sounds. This ability 

to identify NAS and DAS significantly varied (P = 0.042, 0.021, respectively) 

at all three levels of GWN, whilst no significant impact of GWN levels on 

CAS sound recognition was observed (P = 0.311). 

Post hoc analysis of the NAS and DAS classes revealed a statistically 

significant difference in students’ scores for the NAS class between no GWN 

and SNR-40 (P = 0.016). For the DAS class, significant differences were 

found between no GWN and SNR-40 (P = 0.013) and between SNR-40 and 

SNR-20 (P = 0.023). 

The hypothesis that ambient noise uniformly impacts all lung sound 

classes’ identification was rejected. The findings indicated that background 

noise especially affected DAS class, which was the most difficult to identify 

at SNR-40 level of noise pollution. 

Existing research shows that crackles are more difficult to identify 

correctly than wheezes, which belong to the DAS and CAS classes of lung 

sounds respectively [135]. Particularly, research by Ye Peitao examined the 

ability of 56 subjects to distinguish fake crackles from real ones and conclu-

ded that the former has a statistically significant impact on misdiagnosis 

[136]. This research indicates another contributing factor, noise, as demon-

strated by different levels of GWN. This factor is concerning because DAS 

lung sounds are associated with heart failure and pneumonia; therefore, a lack 

of early diagnosis could adversely impact the care of these patients and 

negatively affect preliminary treatment plan. 

Assessing acoustic properties is a key in understanding why DAS is 

affected more than CAS. Amongst the two classes, adventitious lung sounds 

and wheezes are continuous, high-pitched sounds with a frequency of 400 Hz, 

lasting more than 80 ms. In contrast, crackles are discontinuous, exhibiting a 

wider frequency range of 100–2000 Hz but with a notably shorter duration of 

less than 20 ms [137].  

Fine crackles are hard to hear due to their short duration. In a previous 

study by Moriki Dafni, which included 296 physicians with different 

specialities and levels of expertise, only 55.2% correctly identified fine 

crackles, compared to 72.2% who correctly recognised wheezes [138]. They 

can also be more easily confused with the rubbing of the stethoscope 

membrane sound [136]. The study used only five audio-recorded respiratory 

sounds that physicians had to listen to and document their responses. 

Whilst CAS appears not to be impacted by GWN, this finding may not 

hold true if different types of background noise, such as babbling or car 

sounds, are used. 



152152 

Another major reason why CAS is least affected by GWN is that wheezes 

have the most distinct audio qualities amongst the three classes. Whilst NAS 

could potentially be confused with DAS, especially when GWN is intro-

duced, students misidentify these lung sounds even at no GWN and SNR-20 

levels. 

Regarding the DAS class of sounds, a fascinating observation is obtai-

ned: identifying lung sounds at SNR-40 is more difficult compared to SNR-20. 

Previous research has already identified crackles as problematic to identify 

and easy to confuse, particularly due to fake crackles, a wide frequency range 

and their short duration [136, 137]. This research indicates that not only is the 

DAS class harder to identify, but it is also the most affected by noise 

pollution. Interestingly, this class is impacted most at the medium noise level 

(SNR-40) rather than at higher intensity (SNR-20). 

Finally, the final stage of the study looked at comparing MCC, sensitivity 

and specificity values. MCC value was chosen in additional to standard 

evaluation coefficients as there was an imbalanced dataset in machine 

learning with lower DAS class and therefore a more balanced matric was 

needed than a standard accuracy. 

Though, as previously mentioned students’ ability to recognise sounds 

was impacted now it was time to compare it to machine learning models.  

The comparison of the Histgradient model and MF students’ MCC 

performance under different levels of GWN revealed interesting trends. 

Under the no GWN condition, MF students performed similarly to the 

Histgradient model, as no statistically significant differences were observed 
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significant differences were observed for each sound class (P = 0.035 for 

NAS, P = 0.002 for CAS, and P = 0.000 for DAS). The ML model’s 

performance declined for NAS and CAS, with MCC scores of 0.341 (IQR: 

0.288–0.422) and 0.256 (IQR: 0.180–0.374), respectively. However, for 

DAS, the Histgradient model achieved a notably higher MCC score of 0.557 

(IQR: 0.491–0.621), outperforming MF students, who scored just 0.000 

(IQR: –0.250–1.000). This suggests that while the ML model struggled with 
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in identifying DAS, a class of lung sounds that proved particularly difficult 

for human listeners.  

Finally, at the highest GWN level (SNR-20), MF students significantly 

outperformed the Histgradient model across all sound classes (P = 0.000). 

The ML model’s performance deteriorated sharply, with MCC scores of 0.116 

(IQR: –0.013–0.173), 0.001 (IQR: –0.095–0.255), and 0.000 (IQR: –0.045–

0.067) for NAS, CAS, and DAS, respectively, whereas MF students maintai-

ned a consistent score of 0.500 across all classes’ recognition.  

Concerning sensitivity, varied GWN conditions reveals important diffe-

rences in performance between the spectrogram-based Histgradient ML 

model and MF students. In the no GWN added condition, while both groups 

showed comparable sensitivity for DAS classification (ML: 0.485, IQR: 

0.422-0.552 vs MFS: 0.500, IQR –0.250–1.000; P > 0.05), the ML model 

demonstrated significantly better performance for NAS (0.471, IQR: 0.415–

0.543 vs 0.500, IQR: 0.250–1.000; P = 0.030) and CAS (0.587, IQR: 0.522–

0.654 vs 0.500, IQR: 0.000–1.000; P = 0.000). 

At medium levels of GWN (SNR-40), the ML model maintained higher 

sensitivity than MFS for NAS (0.341, IQR: 0.288–0.422 vs 0.500, IQR: 

0.250–1.000; P = 0.000) but showed lower sensitivity for CAS (0.256, IQR: 

0.180–0.374 vs 0.500, IQR: 0.000–1.000; P = 0.000), with no significant 

difference in DAS classification (P > 0.05). Notably, the ML model’s DAS 

sensitivity (0.557, IQR: 0.491-0.621) contrasted sharply with MFS perfor-

mance (0.000, IQR: 0.250–1.000). 

Under the highest tested GWN conditions (SNR-20), the ML model’s 

sensitivity dropped substantially across all classes: NAS (0.116, IQR: 0.013–

0.173), CAS (0.001, IQR: 0.095–0.255), and DAS (0.000, IQR: 0.045–

0.067). While no significant differences existed between two study groups 

for NAS and CAS class identification (P > 0.05), as students were also 

impacted by ambient noise. There was a significant performance difference 

between the study groups in DAS lung class identification sensitivity scores, 

with MFS outperforming ML model (0.500, IQR: 0.250–1.000 vs ML; P = 

0.000). 

These results demonstrate that while the ML model shows superior 

sensitivity in noise-free conditions, particularly for NAS and CAS classifi-

cations, its performance degrades with increasing noise levels. Therefore, 

ambient noise levels significantly affect ML model performance, with 

degradation as noise increases. This analysis highlights the ML model’s good 

sensitivity scores in low-noise with some robustness to moderate (SNR-40) 

GWN conditions but vulnerability to higher GWN levels. At the same time, 

MFS show more consistent (though variable across lung sound classes) 
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performance across noise levels although with a trade-off that students have 

higher variability, as shown by interquartile range as compared to ML model. 

Specificity comparison findings reveal distinct performance patterns 

between the Histgradient ML model and MF students under varying GWN 

conditions.  

Under no GWN conditions, the ML model demonstrated comparable 

specificity to MFS for NAS (ML: 0.471, IQR: 0.415–0.543 vs MFS: 0.500, 

IQR: –0.250–1.000; P > 0.05) and CAS (ML: 0.587, IQR 0.522–0.654 vs 

MFS: 0.500, IQR: 0.000–1.000; P > 0.05), while showing significantly better 

performance for DAS (ML: 0.485, IQR: 0.422–0.552 vs MFS: 0.500, IQR: –

0.250–1.000; P = 0.000). Additionally, the ML model holds an advantage 

over human subjects by exhibiting lower interquartile values (IQR), indi-

cating lower variability than human subjects, but this is only true under low 

ambient noise conditions.  

When moderate noise was introduced (SNR-40), the ML model main-

tained its advantage in DAS classification (ML: 0.557, IQR: 0.491–0.621 vs 

MFS: 0.000, IQR: –0.250–1.000; P = 0.024) but was outperformed by MFS 

in NAS (ML: 0.341, IQR: 0.288–0.422 vs MFS: 0.500, IQR: –0.250–1.000; 

P = 0.000), with comparable performance in CAS (P > 0.05).  

Under high noise conditions (SNR-20), MFS showed consistently 

superior specificity across all classes: NAS (0.500, IQR: –0.250–1.000 vs 

ML: 0.116, IQR: –0.013–0.173; P = 0.000), CAS (0.500, IQR: 0.000–1.000 

vs ML: 0.001, IQR: –0.095–0.255; P = 0.000), and DAS (0.500, IQR: –

0.250–1.000 vs ML: 0.000, IQR: –0.045–0.067; P = 0.000).  

These specificity results demonstrate that while the ML model performs 

well in no GWN added and medium levels of GWN (SNR-40), particularly 

for DAS classification, MFS exhibit greater robustness in noisy environ-

ments, maintaining stable performance where the ML model’s accuracy 

deteriorates significantly. 

The substantial performance gap at GWN SNR-20 for specificity, MCC 

scores, and sensitivity suggests that ML models require additional noise 

resilience improvements to match healthcare workers performance in real-

world clinical settings where acoustic interference is common such as emer-

gency room settings. 

These findings indicate that ML models could serve as valuable clinical 

assistants, particularly for detecting discontinuous auscultated sounds in quiet 

and medium-noisy environments where human perception is significantly 

impaired. This could lead to better sensitivity for diagnosing DAS types of 

adventitious lung sounds, such as crackles, which are associated with leading 

morbidities such as HF and pneumonia. 
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Moreover, study results highlight both the potential strengths and 

limitations of current ML models in lung sound classification under ambient 

noise conditions. Human listeners generally outperform ML models in highly 

noisy environments, suggesting a need for further research that explores 

improving robustness for lung sound classification models.  

The model’s diagnostic sensitivity to detect DAS sounds was not just due 

to model or spectrogram visualisation features, but also due to rudimentary 

fine tuning where sensitivity threshold for DAS was set at 1.30, for CAS at 

1.1 and for NAS at 1.0. This was done due to the fact that DAS class of dataset 

was smaller as compared to other two classes and additionally it is known 

that discontinuous lung sounds are more difficult to detect. Therefore, 

showing potential and importance of fine-tuning ML models.  

Future work should focus on enhancing ML models’ robustness through 

noise-adaptive training strategies, such as data augmentation and advanced 

denoising methods, to further improve performance across all lung sound 

classes. 

The literature overviews on machine learning model’s robustness have 

shown limited data available of lung ambient noise impact on auscultation, 

but our research empathises paramount importance in such research kind.  

This clearly shows the need not only training and assessing performance 

of ML models under different levels of GWN and other types of ambient 

noise, but also comparing trained models to human subjects’ abilities. Only 

then ML models can fully be integrated as diagnostic tool to assist healthcare 

workers. 

Advantages and disadvantages of the study 
 There are several advantages to this study design. First, this is the first 

research to compare human subjects' ability to learn and identify three classes 

of lung sounds under three levels of GWN. Secondly, the research project has 

achieved statistically significant results in showing the impact of GWN on 

ML models. The research used a substantial number of ML model variations; 

24 in total (12 spectrogram-based and 12 scalogram-based), which allowed 

for comparing a large number of ML models under the same conditions as a 

tool for classification of lung sounds. The study compared human subjects 

and ML models across different sound classes and ambient noise levels. This 

allowed for the revelation of advantages and disadvantages of organic 

intelligence versus AI, i.e., top ML model (Histgradient) performing better 

under low noise conditions for DAS class, whilst human subjects performed 

better under noisiest test conditions. 
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The drawback of the work is that even though 250 recordings were used 

for training and assessing ML models, this might still not be sufficient to fully 

exploit the models' potential. Though threshold and fine tuning were 

attempted with some success for boosting ML models, the scalogram results 

were very disappointing in their diagnostic accuracy. This might be due to 

the real noise environment conditions in which the recordings were collected. 

The student number was also relatively small at 52 subjects, of which 45 

completed the study fully. Nonetheless, meaningful and statistically signi-

ficant results were achieved. Additionally, this was not a multi-clinical study 

and physicians and nurses were not involved. To expand and make the results 

even more applicable, it would be important to include all types of healthcare 

workers to better understand how assisted ML diagnostics could support the 

specialist in diagnosing lung pathologies under different types of ambient 

noise.  
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CONCLUSION 

1. Machine learning models and medical students can be trained to identify 

three classes of lung sounds but with various levels of accuracy.  

2. Spectrograms based models showed significant better accuracy as com-

pared to scalograms across 12 machine learning models.  

3. Increased Gaussian white noise levels affected the ability of both medical 

students and machine learning models to recognise lung sounds. Machi-

ne learning models were more often affected by the highest level of 

sound contamination (SNR-20), where the ability to recognise normal 

lung sounds, discontinuous, and continuous lung sound classes signifi-

cantly decreased. Meanwhile, out of three lung sound classes, the medi-

cal students’ accuracy in recognising discontinuous was most signifi-

cantly affected by the medium level of Gaussian white noise (SNR-40). 

4. The machine learning Histgradient model at the SNR-40 GWN level 

outperformed medical students in recognising discontinuous lung sounds 

with higher Matthews correlation coefficient and sensitivity while 

maintaining reasonable specificity. Therefore, this ML shows potential 

for use as a diagnostic assistant in low ambient noise conditions.  
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PRACTICAL RECOMMENDATIONS 

1. All physicians, nurses, residents and medical students should know their 

diagnostic accuracy for a given lung sound class and noise level in their 

work environment. This assessment could be performed via web-based 

examination format.  

2. All future machine learning models should be evaluated for environmen-

tal noise conditions. The models performance should be freely available 

for access and scrutiny.  

3. The Histgradient Boost machine learning model should be further explo-

red and developed to help identify lung sounds belonging to the discon-

tinues lung sounds class under sound pollution conditions. 

4. All models used as an aid to the diagnosis of lung sounds in the clinical 

work of healthcare professionals should be evaluated at different ambient 

noise levels. 

5. The machine learning model diagnostic assistant integration with health-

care worker performing auscultation should always take into account the 

specialist performance for that particular sound under certain ambient 

noise conditions, this should be weight against machine learning models 

performance under the same conditions and once diagnosis assistance is 

provided by the model it could do so in a context of this information.  
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SANTRAUKA  

1. SUTRUMPINIMAI 

AdaBoost – adaptacinis stiprinimas (mašininio mokymosi modelis)  

(angl. Adaptive Boosting) 

ANN – dirbtinis neuroninis tinklas  

(angl. artificial neural network) 

AIF – asmens informavimo forma 

boxplot – dėžutės ir ūsų pobūdžio diagrama (ang. boxplot diagram) 

BT – baltasis triukšmas 

CatBoost – kategorijų gradientinis stiprinimo modelis (mašininio mokymosi 

modelis) (angl. Categorical data Gradient Boosting) 

DAK – drėgni auskultaciniai karkalai 

dB – decibelai  

DI – dirbtinis intelektas 

ET – „Papildomų medžių“ mašininio mokymosi modelis  

(angl. Extra Trees) 

el. stetoskopas – elektroninis stetoskopas 

GB – Gradientinio stiprinimo mašininio mokymosi modelis  

(angl. Gradient Boosting) 

GBT – Gausso baltas triukšmas 

Histgradient – Histogramomis pagrįsto gradientinio stiprinimo klasifikacinio 

medžio mašininio mokymosi modelis  

(angl. Histogram-based Gradient Boosting Classification Tree) 

Hz – hercai 

IFN – inkstų funkcijos nepakankamumas 

ISD – informuoto sutikimo dokumentas 

K-NN – K-artimiausi kaimynai (mašininio mokymosi modelis)  

(angl. K-Nearest Neighbors) 

KNT – Konvoliucinis neuroninis tinklas 

LightGBM – lengvas gradientinis stiprinimo mašinio mokymosi modelis  

(angl. Light Gradient Boosting Machine) 

LIL – lėtinė inkstų liga 

LOPL – Lėtinė obstrukcinė plaučių liga 

LR – logistinės regresijos mašininio mokymosi modelis  

(angl. Logistic Regression) 

MF – Medicinos fakultetas 

MFS – Medicinos fakulteto studentas 

MKK – Motiejaus koreliacijos koeficientas 

MLP – daugiasluoksnis perceptronas (mašininio mokymosi modelis)  

(angl. Multilayer Perceptron)  

MM – mašininis mokymasis 

ms – milisekundės 

NAG – normalūs auskultaciniai garsai 

OI – organinis intelektas 

PSO – Pasaulio sveikatos organizacija 
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RF – atsitiktinių medžių tipo mašininio mokymosi modelis  

(angl. Random Forest) 
ROC – sprendimus priimančiojo ypatybių kreivė  

(angl. Receiver Operating Characteristic) 

ROC-AUC – plotas po sprendimus priimančiojo ypatybių kreive  

(angl. Receiver Operating Characteristic Area Under the Curve) 

s – sekundės 

SAK – sausi auskultaciniai karkalai  

SITS – signalų ir triukšmo santykis 

SN – standartinis nuokrypis 

SPS – Skubios pagalbos skyrius 

SVM – palaikymo vektorių mašininio mokymosi modelis  

(angl. Support Vector Machines) 

ŠN – širdies nepakankamumas 

XGBoost – Ekstremalus gradientinis stiprinimo klasifikatorius (mašininio 

mokymosi modelis) (angl. Extreme Gradient Boosting classifier) 

2. ĮVADAS 

Stetoskopas sveikatos priežiūros specialistų klinikiniame darbe kasdien 

naudojamas daugiau nei 200 metų, tačiau šio prietaiso naudojimas vis dar 

apribotas tyrėjo subjektyviu gebėjimu efektyviai atlikti auskultaciją ir ją 

vertini bei aplinkos triukšmo lygiu [1–3]. 

Pastebėta, jog pastarąjį dešimtmetį krito kardiopulmoninės auskultacijos 

atlikimo dažnis ir šių auskultacijų interpretavimo lygis [4, 5]. Plaučių auskul-

tacija išlieka vis dar svarbiausias iš keturių plaučių sistemos klinikinio išty-

rimo metodų. Plaučių ligos – trečia pagal dažnumą mirties priežastis visame 

pasaulyje [6, 7], todėl geri plaučių auskultaciniai įgūdžiai, kaip pradinis, grei-

tas ir efektyvus, neinvazinis ištyrimo metodas klinikiniame sveikatos priežiū-

ros specialistų darbe aktualus ir būtinas. 

Mokslas ir inžinerija nestovi vietoje, dešimtmečius kuriami bei tobuli-

nami elektroniniai stetoskopai (el. stetoskopai), būtent tai leido plėtoti kom-

piuterinę auskultaciją [8, 9]. 

Naujausi pokyčiai mikroschemų industrijoje, skaičiavimo galios spartos 

progresas, paremtas Moore‘o dėsniu, kartu su patobulintais matematiniais 

modeliais lėmė vis didesnius proveržius ir mašininio mokymosi (MM) 

priemonių taikymą diagnostikos srityje [11–13]. 

Sinerginis elektroninių stetoskopų ir dirbtinio intelekto (DI), o konkre-

čiau MM modelių, derinys išryškėjo kaip galimas sprendimas, siekiant pa-

gerinti plaučių auskultacijos diagnostinį tikslumą [6]. 

Tačiau yra labai nedaug straipsnių, kuriuose būtų lyginamas žmonių 

auskultacijų interpretavimo tikslumas su dideliu skaičiumi MM modelių 

gebėjimu interpretuoti auskultacinius duomenis. 



161160 

RF – atsitiktinių medžių tipo mašininio mokymosi modelis  

(angl. Random Forest) 
ROC – sprendimus priimančiojo ypatybių kreivė  

(angl. Receiver Operating Characteristic) 

ROC-AUC – plotas po sprendimus priimančiojo ypatybių kreive  

(angl. Receiver Operating Characteristic Area Under the Curve) 

s – sekundės 

SAK – sausi auskultaciniai karkalai  

SITS – signalų ir triukšmo santykis 

SN – standartinis nuokrypis 

SPS – Skubios pagalbos skyrius 

SVM – palaikymo vektorių mašininio mokymosi modelis  

(angl. Support Vector Machines) 

ŠN – širdies nepakankamumas 

XGBoost – Ekstremalus gradientinis stiprinimo klasifikatorius (mašininio 

mokymosi modelis) (angl. Extreme Gradient Boosting classifier) 

2. ĮVADAS 

Stetoskopas sveikatos priežiūros specialistų klinikiniame darbe kasdien 

naudojamas daugiau nei 200 metų, tačiau šio prietaiso naudojimas vis dar 

apribotas tyrėjo subjektyviu gebėjimu efektyviai atlikti auskultaciją ir ją 

vertini bei aplinkos triukšmo lygiu [1–3]. 

Pastebėta, jog pastarąjį dešimtmetį krito kardiopulmoninės auskultacijos 

atlikimo dažnis ir šių auskultacijų interpretavimo lygis [4, 5]. Plaučių auskul-

tacija išlieka vis dar svarbiausias iš keturių plaučių sistemos klinikinio išty-

rimo metodų. Plaučių ligos – trečia pagal dažnumą mirties priežastis visame 

pasaulyje [6, 7], todėl geri plaučių auskultaciniai įgūdžiai, kaip pradinis, grei-

tas ir efektyvus, neinvazinis ištyrimo metodas klinikiniame sveikatos priežiū-

ros specialistų darbe aktualus ir būtinas. 

Mokslas ir inžinerija nestovi vietoje, dešimtmečius kuriami bei tobuli-

nami elektroniniai stetoskopai (el. stetoskopai), būtent tai leido plėtoti kom-

piuterinę auskultaciją [8, 9]. 

Naujausi pokyčiai mikroschemų industrijoje, skaičiavimo galios spartos 

progresas, paremtas Moore‘o dėsniu, kartu su patobulintais matematiniais 

modeliais lėmė vis didesnius proveržius ir mašininio mokymosi (MM) 

priemonių taikymą diagnostikos srityje [11–13]. 

Sinerginis elektroninių stetoskopų ir dirbtinio intelekto (DI), o konkre-

čiau MM modelių, derinys išryškėjo kaip galimas sprendimas, siekiant pa-

gerinti plaučių auskultacijos diagnostinį tikslumą [6]. 

Tačiau yra labai nedaug straipsnių, kuriuose būtų lyginamas žmonių 

auskultacijų interpretavimo tikslumas su dideliu skaičiumi MM modelių 

gebėjimu interpretuoti auskultacinius duomenis. 
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Išlieka esminis klausimas, kaip ir koks MM modelis galėtų tapti pagal-

bine priemone gydytojui, esant apsunkintoms klinikinės auskultacijos sąly-
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3. TIKSLAS IR UŽDAVINIAI 

3.1. Tikslas 
Įvertinti ir palyginti mašininio mokymosi modelių ir medicinos studentų 

diagnostinį tikslumą, teisingai identifikuojant tris auskultacinių plaučių garsų 

klases, esant trims skirtingiems Gausso baltojo triukšmo (GBT) lygiams. 
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3.2. Uždaviniai 
1. Išmokyti mašininio mokymosi modelius bei medicinos studentus 

identifikuoti tris auskultacinių plaučių garsų klases ir įvertinti jų 

gebėjimą identifikuoti jas skirtinguose GBT lygiuose. 

2. Įvertinti spektrogramos ir skalogramos įtaką 12 skirtingų anotuotų 

mašininio mokymosi modelių gebėjimui tiksliai identifikuoti skir-

tingas plaučių garsų klases. 

3. Palyginti mašininio mokymosi modelių ir medicinos studentų gebė-

jimą identifikuoti tris plaučių garsų klases, esant trims skirtingiems 

GBT lygiams, naudojant pagrindinę diagnostinę metriką. 

4. Nustatyti mašininio mokymosi modelio galimybes veikti kaip diag-

nostiniam pagalbininkui GBT sąlygomis, identifikuojant tris pagrin-

dines plaučių garsų klases.  

3.3. Darbo naujumas 
Tyrimo projektas yra unikalus pasaulyje. Pirmas tokio pobūdžio, paly-

ginantis žmogiškųjų tyrimo subjektų ir mašininio mokymosi modelių gebė-

jimus identifikuoti tris plaučių garsų klases trijose GBT lygio sąlygose. 

Šiuo metu nėra atliktų tyrimų, kurie lygintų 12 MM modelių rezultatus 

su žmonių gebėjimais, naudojant tuos pačius plaučių garsų duomenų 

rinkinius. Tyrimų, nagrinėjančių žmogaus gebėjimą atpažinti plaučių garsus 

skirtingomis triukšmo lygio sąlygomis yra nedaug. 

Moksliniai straipsniai, kurie tyrinėtų aplinkos triukšmo poveikį MM 

modelių tikslumui yra taipogi reti, o kai kurie daugiau nei dešimties metų 

senumo, tuo tarpu per šį laiką MM modeliai tobulėjo, atsirado naujų įrankių, 

kurie dar nebuvo išbandyti minėtose sąlygose. Todėl, pasitelkiant kelis skir-

tingus MM modelius ir dvi garso atvaizdavimo formas, galima pateikti naujų 

įžvalgų apie tai, kurie modeliai galėtų būti atspariausi triukšmo poveikiui ir 

kaip jie galėtų būti naudojami sprendimų priėmimui. Tyrimai apie žmonių 

gebėjimą atpažinti skirtingų klasių plaučių garsus taip pat yra menki, senesni 

nei 5 metų, atlikti įvairiose aplinkose, jų pernelyg neklasifikuojant arba 

auskultaciniai duomenys rinkti vaikų populiacijoje [30, 31]. 

Tyrimų straipsniai netgi pateikia prieštaringas išvadas, pavyzdžiui, kad 

daugumos tyrėjų gebėjimas girdėti širdies ir plaučių garsus nėra reikšmingai 

paveiktas ekstremalaus aplinkos triukšmo garsumo, kuris pasitaiko skubios 

pagalbos skyriuose [31]. 

2019 m. Rory Wallis apžvalgos straipsnis padarė išvadą, kad aplinkos 

triukšmo lygio matavimai ligoninėse yra netikslūs ir nestandartizuoti [32]. 

Aukščiau minėti faktoriai apsunkina hipotezių tikrinimą, bandant pakartoti 

metodiką. GBT savybės svarbios standartizuojant triukšmo lygį, kadangi jis 
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tolygiai apima visas dažnių juostas. Todėl GBT panaudojimas, kaip standar-

tizuoto aplinkos triukšmo, vertinant žmonių ir MM mokymosi auskultacinių 

garsų atpažinimo rezultatus yra naujo pobūdžio tyrimas. 

Tuo tarpu tyrimų, kurie nagrinėja MM modelius skirtingomis aplinkos 

triukšmo sąlygomis, taip pat yra labai mažai ir literatūros apžvalgoje galima 

rasti tik tris straipsnius [10, 30, 33]. Be to, kai kurie tyrimai neturi statistiškai 

reikšmingo duomenų kiekio, kad būtų galima atlikti statistinę analizę [10]. 

Šiuolaikinių MM modelių pritaikymas auskultacijų interpretavimui, 

esant standartizuotam GBT, trijuose skirtinguose triukšmo lygiuose bei minė-

tų MM modelių rezultatų palyginimas su žmogiškųjų tyrimo subjektų gebėji-

mu interpretuoti tą patį auskultacinių duomenų rinkinį, tomis pačiomis stan-

dartizuotomis garso užterštumo sąlygomis paverčia šį tyrimą visiškai unikaliu. 

4. METODIKA 

4.1. Tyrimo dizainas, tyrimo vieta 
Prospektyvusis tyrimas buvo atliktas Lietuvoje 2020–2024 m. 

Tyrimo dalyviai: 

Auskultacinių duomenų rinkimo etape tyrimo dalyviai: pacientai, hospi-

talizuoti dėl diagnozuotos pneumonijos, širdies nepakankamumo (ŠN), lėti-

nės obstrukcinės plaučių ligos (LOPL), astmos, inkstų nepakankamumo, 

lėtinės inkstų ligos (LIL) arba hidrotorakso, remiantis Lietuvos sveikatos 

mokslų universiteto Kauno ligoninės protokolais [95–104], kuriems pirminio 

klinikinio tyrimo duomenimis buvo nustatyti patologiniai ir nepatologiniai 

plaučių garsai. 

Žmogiškųjų tyrimo subjektų auskultacijų interpretacijos apmokymo 

etape tyrimo dalyviai: savanoriai II ir III kurso LSMU medicinos studijų 

studentai, iki tyrimo neturėję auskultacinių įgūdžių. 

Tyrimo vieta plaučių garsų (auskultacinių duomenų) rinkimo etape: 

tyrimas buvo atliktas Lietuvos sveikatos mokslų universiteto Kauno ligoninės 

Kardiologijos ir Vidaus ligų diagnostikos skyriuose (Josvainių g. 2 ir Hipod-

romo g. 13, Kaunas). 

Tyrimo vieta medicinos studentų auskultacijų mokymo etape: Lietuvos 

sveikatos mokslų universiteto, Vidaus ligų katedra (Josvainių g. 2, Kaunas). 

Tyrimas dalinai atliktas bendradarbiaujant su Kauno technologijos 

universiteto profesoriumi Evaldu Vaičiukynu ir jo kolegomis, remiant Kauno 

technologijos universiteto (dotacijos Nr. PP2023/39/4) ir Lietuvos sveikatos 

mokslų universiteto švietimo ir mokslo fondams.  
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4.2. Imties dydžio apskaičiavimas 
Patologinių ir nepatologinių plaučių garsų turinčių pacientų (auskulta-

cinių duomenų rinkimo etape) ir auskultacijų apmokymo etapo studentų 

imties dydžiai buvo apskaičiuoti naudojant G*Power programinę įrangą 

(versija 3.1.9.4; Heinrich-Heine-Universität Düsseldorf, Düsseldorfas, Vo-

kietija) [106, 107]. 

Medicinos studentų imties dydžio skaičiavimai buvo grindžiami prieš tai 

atliktu pilotiniu tyrimu. Programinė įranga naudojo šiuos nustatymus vidur-

kiams apskaičiuoti: Wilcoxon suporuotų rangų testas (sulygintos poros) funk-

cija. Buvo taikomos šios prielaidos: galia (1 − β klaidos tikimybė) – 0,95 ir 

α klaidos tikimybė – 0,05. Efekto dydis (Cohen dz) iš pilotinio tyrimo buvo 

0,61, pagal reikšmes prieš ir po mokymo bei standartinius nuokrypius (SD), 

kurie buvo atitinkamai 4,80 ± 0,49 ir 5,07 ± 0,36. Šios reikšmės buvo įvestos 

į funkciją, o rezultatas parodė, kad reikalinga 33 dalyvių imtis. Pilotiniame 

tyrime buvo pridėta papildomai 30 proc. daugiau turimųjų dėl atkritimo 

galimybės. Todėl, atsižvelgiant į numanomą tiriamųjų atkritimo tikimybę, 

šiam tyrimui reikalingas bendras dalyvių skaičius apskaičiuotas buvo 48. 

Plaučių garsų pacientų imties dydis buvo apskaičiuotas remiantis 

prielaida, kad efekto dydis bus 0,50, galia (1 − β klaidos tikimybė) – 0,95 ir 

α klaidos tikimybė – 0,05, o grupių skaičius buvo nustatytas 3. G*Power 

programinės įrangos (versija 3.1.9.4; Heinrich-Heine-Universität Düsseldorf, 

Düsseldorfas, Vokietija) funkcija buvo nustatyta kaip ANOVA: fiksuotas 

efektas. Įvestis davė rezultatą – 85 dalyviai (įskaitant kontrolinę grupę). Plau-

čių garsų įrašai turėjo būti peržiūrėti taikant „double-blind“ metodą, darant 

prielaidą, kad apie 30 proc. atrinktųjų nebus tinkami, o tai reiškia, kad į tyrimą 

turėjo būti įtraukta apie 122 dalyviai. 

4.3. Įtraukimo ir neįtraukimo kriterijai 
Įtraukimo kriterijai – pacientams, plaučių garsų įrašymui: 

1. Pacientas, kuriam diagnozuota pneumonija; 

2. Pacientas, kuriam diagnozuota astma; 

3. Pacientas, kuriam diagnozuotas širdies nepakankamumas (ŠN); 

4. Pacientas, kuriam diagnozuotas inkstų nepakankamumas (IFN); 

5. Pacientas, kuriam diagnozuota lėtinė obstrukcinė plaučių liga (LOPL) 

paūmėjimas; 

6. Pacientas, turintis papildomų plaučių garsų; 

7. Pacientas, turintis normalius plaučių auskultacinius garsus; 

8. Pacientas, vyresnis nei 18 metų; 

9. Pacientas, neturintis psichikos sutrikimų; 
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10. Pacientas buvo sąmoningas ir galėjo teisingai atsakyti į klausimus; 

11. Pacientas, sutinkantis savanoriškai dalyvauti ir pasirašęs informuoto 

sutikimo formą. 

Įtraukimo kriterijai – medicinos studentams, auskultacijų apmokymams: 

1. LSMU medicinos studentas, esantis antrame ar trečiame kurse; 

2. Dalyvis, vyresnis nei 18 metų; 

3. Dalyvis, neturintis ankstesnės auskultacijos patirties; 

4. Sutinkantis savanoriškai dalyvauti ir pasirašęs informuoto sutikimo 

formą. 

Neįtraukimo kriterijai – pacientams, plaučių garsų įrašymui: 

1. Pacientai, atsisakę dalyvauti tyrime; 

2. Pacientai, kurie negalėjo kalbėti lietuviškai ir suteikti sutikimo; 

3. Pacientai, kurie negalėjo stovėti ar sėdėti ramiai, kad būtų atlikta 

auskultacija. 

Neįtraukimo kriterijai – medicinos studentams, auskultacijų apmoky-

mams: 

1. Studentai, turintys klausos sutrikimų; 

2. Studentai, vyresni nei 40 metų; 

3. Studentai, kurie atsisakė dalyvauti arba nepasirašė sutikimo formų. 

4.4. Tyrimo metodika 
Siekiant palygti medicinos studentų ir mašininio mokymosi (MM) 

modelių rezultatus, metodika buvo suskirstyta į keletą mažesnių užduočių. 

Pirma užduotis buvo įrašyti plaučių garsus ir juos apdoroti mokymo ir 

mokymosi tikslais. 

Pacientų auskultaciniai įrašai buvo atlikti per maždaug tris mėnesius 

(neįskaitant pertraukų). Elektrinio stetoskopo nustatymai: režimas nustatytas 

į diafragmą, o garso stiprinimas – į 3 lygį (maksimalus lygis – 9). Tyrėjas 

įrašus atlikdavo palatose, kuriose paprastai būdavo nuo 2 iki 4 pacientų. Buvo 

naudojamas 3M™ Littmann® CORE skaitmeninis stetoskopas (3M Compa-

ny, St Paul, Minesota, JAV), HP ProBook 450 G4 nešiojamas kompiuteris 

(HP Inc., Palo Alto, Kalifornija, JAV) su „Microsoft® Windows® 10“ 

operacine sistema (Microsoft Corporation, Redmondas, Vašingtonas, JAV) ir 

Intel® Core™ i5 i5-7200U procesoriumi (Intel Corporation, Santa Clara, 

Kalifornija, JAV), skirtas garso failams saugoti naudojant 3M™ Littmann® 

StethAssist – 1.3.230 programinę įrangą (3M Company, St Paul, Minesota, 

JAV). 
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Norint įvertinti medicinos studentų ir MM modelių atsparumą skirtin-

giems signalo ir triukšmo santykio (SITS) lygiams, kiekvienam įrašui buvo 

pridėtas Gauso baltasis triukšmas (GBT) pagal Samit Ari metodiką (108). 

Trijų lygių GBT: be GBT, GBT su SITS-40 ir GBT su SITS-20. GBT buvo 

pridėtas naudojant „Anaconda®“ (Austinas, Teksasas, JAV) su „Jupyter 

Notebook 6.4.7“ ir Python paketais mašininio mokymosi treniravimui ir 

vertinimui. Garso ypatybės buvo išgautos naudojant Python biblioteką ir 

išsaugotos CSV formatu. 

Antra užduotis buvo apmokyti MM modelius plaučių garsų interpre-

tacijos. 

Iš viso buvo pasirinkta 12 anotuotų mašininio mokymosi modelių: 

AdaBoost, CatBoost, Extra Trees (ET), gradient boosting (GB), Histgradient, 

K-NN, LightGBM, logistinė regresija, MLP, Random Forest, SVM, 

XGBoost. Šie modeliai buvo pasirinkti dėl jų potencialo ankstesniuose plau-

čių garsų ar kitų klausos biosignalų diagnostikos tyrimuose bei galimybės 

taikyti mažesniems duomenų rinkiniams. Modeliai buvo mokomi naudojant 

metodiką, kuri išskiria ypatybes iš skalogramų ir spektrogramų [111]. 

Mokymas buvo atliktas specialiai tyrimui sukomplektuotame kompiuteryje 

su „Windows® 10“ operacine sistema (Microsoft Corporation, Redmondas, 

Vašingtonas, JAV), kuris buvo aprūpintas Intel® Core™ i7-12700K proce-

soriumi, 64 GB RAM ir NVIDIA GeForce RTX 3060 vaizdo plokšte su 

12 GB VRAM (NVIDIA Corporation, Santa Clara, Kalifornija, JAV). 

Duomenų rinkinys buvo padalintas santykiu 80/20 mokymui ir testa-

vimui [112]. Padalintuose duomenyse buvo proporcingai paskirstyti NAG, 

SAK ir DAK plaučių garsai trijuose skirtinguose GBT lygiuose (be GBT, 

GBT SITS-40 lygyje, GBT SITS-20 lygyje). MM metu mokymo duomenys 

buvo suskirstyti į devynias dalis, kad būtų užtikrintas panašus tikslo klasių 

pasiskirstymas kiekvienoje dalyje ir pagerintas MM modelių veikimas. 

Trečia užduotis buvo įvertinti MM modelių gebėjimą atpažinti tris 

plaučių garsų klases esant trims skirtingiems GBT lygiams. Kiekvienos dalies 

veiklos metrika buvo surinkta ir suskaičiuota vidutinė vertė, kad būtų 

pateiktas geriausias modelio veiklos įvertinimas. Iš viso buvo atlikta 30 itera-

cijų (paleidimų) kiekvienam modeliui, įskaitant klasių disbalanso valdymą, 

kryžminės patikros atlikimą, modelių mokymą ir veiklos metrikų skaičiavimą 

[114]. Pasirinkus geriausią rezultatą gavusį MM modelį iš 24 kurtų variantų 

(12 MM modelių, pagrįstų spektrogramomis, ir 12 – skalogramomis), mode-

lis buvo dar kartą patikslintas, o vidutiniam MMC skaičiavimui buvo atlikti 

45 paleidimai. 
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Ketvirta užduotis buvo įtraukti medicinos studentus ir juos apmokyti 

plaučių auskultacinių garsų interpretavimo, naudojant specialiai sukurtą 

mokymo (-si) svetainę. 

Svetainė, sukurta su mokymo ir testavimo skyriais bei buvo sėkmingai 

panaudota ankstesniame tyrime [109]. Mokymo skyriuje buvo pateikti nor-

malūs ir patologiniai auskultaciniai plaučių garsai bei jų savybių apibūdi-

nimas žodžiais. Mokymo skyriuje buvo 101 plaučių garsų įrašas, iš kurių 

54 proc. buvo DAK ir SAK. Testavimo skyrius buvo sudarytas atsitiktiniu 

būdu ir apėmė 54 garso įrašus, susidedančius proporcingai iš NAG, SAK ir 

DAK klasių plaučių garsų. Prieš inicijuojant tyrimą svetainė buvo išbandyta 

su 15 studentų pilotinėje studijoje, siekiant įvertinti tinklalapio funkcionalu-

mą, efektyvumą ir pašalinti galimus tinklalapio veikimo nesklandumus, o 

surinkti duomenys panaudoti imties dydžio skaičiavimui. Papildomai svetai-

nę peržiūrėjo gyd. pulmonologas dėl kokybės užtikrinimo. Į galutinį tyrimą 

buvo įtraukti 52 antrojo ir trečiojo kurso medicinos fakulteto studentai 

(MFS), atitinkantys įtraukimo kriterijus ir pateikę informuotą sutikimą. 

Penkta užduotis buvo įvertinti studentų gebėjimą atpažinti tris plaučių 

garsų klases esant trims skirtingiems GBT lygiams. 

Po 4 dienų mokymo studentai buvo išbandyti, ar geba teisingai atpažinti 

NAG, SAK ir DAK, atlikdami 3 testus, kurių kiekvienas turėjo skirtingus 

GBT lygius (be GBT, GBT SITS-40 lygyje, GBT SITS-20 lygyje). Vertini-

mas buvo atliktas toje pačioje svetainėje, tinklalapio testavimo skyriuje. 

Šešta užduotis buvo įvertinti galimą skirtingą GBT poveikį medicinos 

studentų ir geriausių MM modelių gebėjimui atpažinti skirtingas plaučių 

garsų klases. 

Galiausiai, septinta užduotis buvo taikyti Friedmano testą su poriniu 

palyginimu, kad būtų palyginti geriausio MM modelio ir medicinos studentų 

MKK reikšmės visuose skirtinguose GBT lygiuose ir visose trijose plaučių 

garsų klasėse. Rezultatų statistinis reikšmingumo lygmuo vertintas, esant 

p < 0,05. 

4.5. Statistinė analizė 
Duomenų analizė MM modelių ir LSMU studentų auskultacijų interpre-

tavimo rezultatams įvertinti buvo atlikta naudojant „Microsoft® Excel®“ 

(Microsoft Corporation) skaičiuoklę ir JASP (ver. 0.18.3; Jeffreys’ Amazing 

Statistics Programme, The Jamovi project, Sidnėjus, Australija) statistikos 

paketą [126]. Bei IBM® SPSS® ver. 29 (IBM Inc., Armonkas, Niujorkas, 

Jungtinės Amerikos Valstijos). p reikšmė, mažesnė arba lygi 0,05, buvo lai-

koma statistiškai reikšminga. Rezultatai buvo pateikti lentelėse ir apibendrinti 

„dėžutės ir ūsų“ pobūdžio (boxplot) diagramose. 
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Atliekant duomenų valymą, septyni subjektai buvo pašalinti iš tolimes-

nės statistinės analizės, nes jie nesugebėjo užbaigti visų trijų testavimų. Todėl 

statistinė analizė buvo atlikta 45 iš 52 subjektų. 

Rezultatai neatitiko normalaus pasiskirstymo, todėl tolesniam vidurkių 

analizavimui buvo naudojami neparametriniai testai. Wilcoxono rangų suma-

žinimo testas įvertino mokymų poveikį studentų gebėjimui tiksliai atpažinti 

plaučių garsus, o Friedmano testas buvo naudojamas analizuoti trijų GBT 

lygių poveikį skirtingų plaučių garsų klasių identifikavimui su dviem laisvės 

laipsniais. Galiausiai buvo atlikta post hoc palyginimo analizė, kad būtų 

įvertintas medicinos studentų gebėjimas atpažinti plaučių garsų klases (NAG, 

SAK ir DAK) atskirai pagal tris skirtingus GBT lygius. 

Studentų garsų interpretavimo testų rezultatai iš mokomosios/testavimo 

svetainės surinkti naudojant MongoDB® (MongoDB, Inc., Niujorkas, JAV) 

programinę įrangą ir įrašyti į „Microsoft® Excel®“ (Microsoft Corporation) 

skaičiuoklę tolimesnei statistinei analizei. 

MM modelių veikimas buvo įrašytas naudojant Anaconda® (Austin, TX, 

JAV) su Jupyter Notebook 6.4.7, naudojant „Python“ paketų mašininio 

mokymosi mokymui ir vertinimui, ir išsaugotas CSV formatu. 

Norint palyginti mašininio mokymosi įrankius, buvo atliktas Friedmano 

testas su post hoc porinių palyginimų analize, siekiant palyginti 24 skirtingų 

MM modelių variacijų diagnostinį tikslumą. Norint palyginti 12 spektro-

gramų ir 12 skalogramų pagrįstų MM modelių našumą, buvo naudojamas 

Wilcoxono pasirašytų rangų testas. p < 0,05 buvo laikoma statistiškai reikš-

minga. 

5. REZULTATAI 

5.1. Tyrimo populiacijos charakteristikos 
5.1.1 lentelė. Aprašomoji lentelė, kurioje pateikiama populiacija, iš kurios 
buvo gauti plaučių garsai tyrimui 

Plaučių 
garsai Moterys 

Moterų 
amžius  

(SN) 
Vyrai 

Vyrų 
amžius 

(SN) 
Bendras 
skaičius 

Bendras 
amžius  

(SN) 
NAG 26 69.5 (16.9) 26 56.5 (18.6) 52 63.0 (18.0) 

SAK 10 75.5 (8.4) 13 66.0 (12.2) 23 70.1 (11.5) 

DAK 12 78.7 (12.3) 21 69.0 (11.7) 33 72.5 (12.7) 

Bendras 48 73.1 (14.7) 60 62.9 (16.0) 108 67.4 (16.2) 

SN – standartinis nuokrypis. 
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5.1.2 lentelė. Aprašomoji lentelė, tyrime dalyvavusių medicinos studentų 
lyties ir amžiaus analizė 

Moterys Moterų 
amžius (SN) Vyrai 

Vyrų  
amžius 

(SN) 
Bendras 
skaičius 

Bendras 
amžius (SN) 

32 21.9 (2.4) 13 21.6 (3.1) 45 21.8 (2.6) 

SN – standartinis nuokrypis. 

5.2. Mašininio mokymosi modelių efektyvumo analizė 
Iš viso 24 mašininių modelių variantai buvo išbandyti naudojant spektro-

gramas ir skalogramas, esant trims GBT triukšmo lygiams (be pridėtinio 

triukšmo, GBT SITS-40 ir GBT SITS-20). Poveikis buvo stebimas trims 

pagrindinėms plaučių garsų klasėms: NAG, SAK, DAK.  

Modelio efektyvumo palyginimui pagrinde buvo naudojamas „receiver 

operating characteristic area under the curve“ – plotas po sprendimus pri-

imančiojo ypatybių kreive (ROC-AUC). Visi modeliai buvo tikrinami dėl 

bendro GBT poveikio jų veikimui taikant Friedmano testą.  

5.2.1 lentelė. Dvylikos spektrogramų pagrįstų modelių našumas pagal ROC-
AUC balus 

Spektrogramomis 
pagrįstas modelis 

ROC-AUC, 
mediana (IQR) 

Testo 
statistika 

Laisvės 
laipsniai p 

AdaBoost 0.800 (0.689–0.853) 

803 11 < 0.001 

CatBoost 0.857 (0.764–0.880) 

Extra Trees 0.820 (0.691–0.859) 

Gradient Boosting 0.874 (0.772–0.897) 

Histgradient 0.865 (0.802–0.894) 

K-NN 0.751 (0.638–0.753) 

LightGBM 0.856 (0.782–0.879) 

Logistic Regression 0.863 (0.781–0.876) 

MLP 0.863 (0.786–0.902) 
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5.2.1 lentelės tęsinys 
Spektrogramomis 
pagrįstas modelis 

ROC-AUC, 
mediana (IQR) 

Testo 
statistika 

Laisvės 
laipsniai p 

Random Forest 0.833 (0.694–0.873) 

803 11 < 0.001 SVM 0.836 (0.746–0.853) 

XGBoost 0.871 (0.782–0.895) 

Geriausiai spektrogramomis pagrįsti algoritmai pagal rezultatų medianą buvo visi stiprinimo 

modeliai: Gradient Boosting ir XGBoost, Histgradient. Histgradient buvo antras pagal 

vidurkį MM modelis, tačiau jo siauresnis tarpkvartilinis intervalas su didžiausiu Q1 kvartiliu 

iš trijų geriausiai pasirodžiusių MM modelių. IQR – tarpkvartilis (interkvartilis). ROC-AUC 

(angl. Receiver Operating Characteristic Area Under the Curve) – plotas po sprendimus 

priimančiojo ypatybių kreive.  

5.2.2 lentelė. Dvylikos skalogramų pagrįstų modelių našumas pagal ROC-
AUC balus 

Skalograma pagrįstas 
modelis 

ROC-AUC, 
mediana (IQR) 

Testo 
statistika 

Laisvės 
laipsniai p 

AdaBoost 0.735 (0.658–0.847) 

574 11 < 0.001 

CatBoost 0.794 (0.679–0.881) 

Extra Trees 0.746 (0.590–0.788) 

Gradient Boosting 0.752 (0.685–0.867) 

Histgradient 0.733 (0.671–0.850) 

K-NN 0.590 (0.528–0.658) 

LightGBM 0.732 (0.673–0.847) 

Logistic Regression 0.756 (0.671–0.814) 

MLP 0.741 (0.590–0.788) 

Random Forest 0.768 (0.635–0.808) 

SVM 0.740 (0.658–0.810) 

XGBoost 0.727 (0.659–0.859) 

Geriausiai pasirodę skalogramų pagrindu veikiantys MM algoritmai, remiantis medianiniu 

rezultatu, iš jų vienas buvo stiprinamojo (angl. boosting) tipo, vienas „papildomų medžių“ 

(angl. extra trees) ir vienas klasikinis modelis. MM modeliai kurie pateko į viršutinį veiklos 

kvartilį: CatBoost, Random Forest ir Logistic Regression. IQR – tarpkvartilis (interkvartilis). 

ROC-AUC (angl. Receiver Operating Characteristic Area Under the Curve) – plotas po 

sprendimus priimančiojo ypatybių kreive.  

  



171171 

5.2.3 lentelė. Dvylikos spektogramų ir dvylikos skalogramų modelių palygi-
nimas pagal ROC-AUC balus 

12 MM spectrogramų 
mediana (IQR) 

12 MM scalogramų  
mediana (IQR) 

Testo 
statistika p 

0.837 (0.638–0.902) 0.735 (0.528–0.881) 583275 < 0.001 

Wilcoxono testas rodo, kad 12 MM modelių, pagrįstų spektrogramomis ir skalogramomis, 

reikšmingai skiriasi, o spektrograma pagrįstų modelių medianos reikšmės yra daug didesnės, 

palyginti su skalograma pagrįstais modeliais. „IQR“ – tarpkvartilis (interkvartilis). „ROC-

AUC“ (angl. Receiver Operating Characteristic Area Under the Curve) – plotas po sprendi-

mus priimančiojo ypatybių kreive. 

5.3. Medicinos fakulteto studentų veiklos rezultatai 
Iš viso 45 medicinos studentai per 4 dienas bandė išmokti trijų klasių 

plaučių garsus ir atlikti testą esant trims GBT triukšmo lygiams (be papil-

domo triukšmo, GBT SNR-40 ir GBT SNR-20). 

Boxplot diagramoje 5.3.1 pav. pavaizduota Medicinos studentų trijų 

klasių plaučių garsų atpažinimo testų rezultatai, kuriuose įvertinama trijų 

Gauso baltojo triukšmo lygių įtaka studentų gebėjimui atpažinti sausų 

auskultacinių karkalų (SAK), drėgnų auskultacinių karkalų (DAK) ir 

normalių auskultacinių garsų (NAG) plaučių garsų klases. 

Friedmano testas parodė, kad gebėjimas atpažinti NAG ir DAK reikš-

mingai skyrėsi (atitinkamai p = 0,042, 0,021), esant trims GBT lygiams, o 

reikšmingo BT lygių poveikio SAK garsams nepastebėta (P = 0,311). siekiant 

įvertinti trijų GBT lygių įtaką gebėjimui atpažinti NAG ir DAK, atliktas post 
hoc palyginimas. Nustatyti statistiškai reikšmingi skirtumai atpažįstant plau-

čių garsus tarp be GBT ir SITS-40 NAG atveju, tarp be GBT ir SITS-40 bei 

tarp SITS-40 ir SITS-20 DAK atveju (atitinkamai p = 0,016, 0,013, 0,023). 
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5.3.1 pav. Medicinos studentų trijų klasių plaučių garsų atpažinimo  
testų rezultatai, esant skirtingiems GBT lygiams. Trijų Gauso baltojo 

triukšmo (GBT) lygių įtaka studentų gebėjimui atpažinti sausų karkalų 
(SAK), drėgnų karkalų (DAK) ir normalių plaučių garsų (NAG) klases 

GBT – Gauso baltasis triukšmas, MKK – Motiejaus koreliacijos koeficientas, SITS – signalo 

ir triukšmo santykis, NAG – normalūs auskultaciniai garsai, DAK – drėgni auskultaciniai 

karkalai, SAK – sausi auskultaciniai karkalai. 

5.4. Geriausio MM modelio rezultatų palyginimas su medicinos 
studentų tikslumu 
Studentų rezultatai buvo perskaičiuoti į tikras teigiamas, klaidingas tei-

giamas, tikras neigiamas, klaidingas neigiamas, šios reikšmės buvo naudo-

jamos apskaičiuojant kiekvienos garso klasės MKK, jautrumą, specifiškumą, 

pagal kiekvieną GBT lygį (be GBT, GBT SITS-40 lygyje, GBT SITS-20 

lygyje). 

Gauti rezultatai buvo panaudoti nubraižant dėžutės ir ūsų diagramą 

(boxplot) ir atliekant Friedmano testą su post hoc analize (5.4.1 pav.). 
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5.3.1 pav. Medicinos studentų trijų klasių plaučių garsų atpažinimo  
testų rezultatai, esant skirtingiems GBT lygiams. Trijų Gauso baltojo 

triukšmo (GBT) lygių įtaka studentų gebėjimui atpažinti sausų karkalų 
(SAK), drėgnų karkalų (DAK) ir normalių plaučių garsų (NAG) klases 

GBT – Gauso baltasis triukšmas, MKK – Motiejaus koreliacijos koeficientas, SITS – signalo 

ir triukšmo santykis, NAG – normalūs auskultaciniai garsai, DAK – drėgni auskultaciniai 

karkalai, SAK – sausi auskultaciniai karkalai. 

5.4. Geriausio MM modelio rezultatų palyginimas su medicinos 
studentų tikslumu 
Studentų rezultatai buvo perskaičiuoti į tikras teigiamas, klaidingas tei-

giamas, tikras neigiamas, klaidingas neigiamas, šios reikšmės buvo naudo-

jamos apskaičiuojant kiekvienos garso klasės MKK, jautrumą, specifiškumą, 

pagal kiekvieną GBT lygį (be GBT, GBT SITS-40 lygyje, GBT SITS-20 

lygyje). 

Gauti rezultatai buvo panaudoti nubraižant dėžutės ir ūsų diagramą 

(boxplot) ir atliekant Friedmano testą su post hoc analize (5.4.1 pav.). 
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Boxplot diagramoje (5.4.1 pav.) matomas skirtingų Gauso baltojo triukš-
mo (GBT) lygių poveikis Histgradient mašininio mokymosi (MM) modeliui 
ir Medicinos Fakulteto studentams (MFS) identifikuoti trijų klasių auskul-
tacinius plaučių garsus, matuojamas Motiejaus koreliacijos koeficientas 
(MKK). 

Studentų auskultacinių garsų atpažinimo rezultatai buvo panašūs į 
spektrogramomis pagrįsto Histgradient mašininio modelio rezultatus, kai į 
modelį nepridėta GBT, nes nepastebėta reikšmingų skirtumų tarp NAG, 
SAK, DAK (p > 0,05 visoms klasėms). Mašininio mokymosi modelio Motie-
jaus koreliacijos koeficiento rezultatai buvo 0,471 (0,415–0,543), 0,587 
(0,522–0,654), 0,485 (0,422–0,552), lyginant su MFS Motiejaus koreliacijos 
koeficiento rezultatais 0,500 (–0,250–1,000), 0,500 (0,000–1,00), 0,500  
(–0,250–1,000), 0,500 (–0,250–1,000) atitinkamai NAG, SAK, DAK auskul-
tacinių garsų klasėse. 

SITS-40 Gausinio užterštumo lygmenyje tarp visų trijų auskultacinių 
garsų klasių atpažinimo buvo statistinis reikšmingumas: NAG, SAK, DAK 
(p = 0,035, p = 0,002, p = 0,000), mašininio mokymosi Histgradient rezultatų 
balai buvo 0,341 (0,288–0,422), 0,256 (0,180–0,374), 0,557 (0,491–0,621), 
palyginus su medicinos fakulteto studentų gautais rezultatais 0,500 (–0,250–
1,000), 0,500 (0,000–1,000), 0,000 (–0,250–1,000), 0,000 (–0,250–1,000) 
atitinkamai šiose garsų klasėse: NAG, SAK, DAK. Tuo tarpu medicinos 
fakulteto studentai parodė geresnius rezultatus atpažįstant normalius plaučių 
garsus (NAG) ir sausus karkalus (SAK), o MM Histgradient modelis, esant 
SITS-40 Gausinio užterštumo lygmeniui pranoko žmogiškųjų tiriamųjų 
subjektų (t. y. studentų) rezultatus geriau atpažįstant drėgnus auskultacinius 
karkalus (DAK).  

Esant Gausinio užterštumo lygmeniui SITS-20, studentai parodė statiš-
kai reikšmingai geresnius auskultacinių garsų atpažinimo rezultatus visose 
auskultacinių garsų klasėse, lyginant su Histgradient MM modeliu (p = 0,000 
NAG ir SAK klasėms, p = 0,009 DAK klasei), rezultatai buvo 0.116 (–0,013–
0,173), 0,001 (–0,095–0,255), 0,000 (–0,045–0,067), palyginti su studentų 
gautais rezultatais 0,500 (–0,250–1,000), 0,500 (0,000–1,000), 0,500 (–0,250– 
1,000), 0,500 (–0,250–1,000) atitinkamai NAG, SAK, DAK auskultacinių 
garsų klasėse. 
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Boxplot diagramoje (5.4.1 pav.) matomas skirtingų Gauso baltojo triukš-
mo (GBT) lygių poveikis Histgradient mašininio mokymosi (MM) modeliui 
ir Medicinos Fakulteto studentams (MFS) identifikuoti trijų klasių auskul-
tacinius plaučių garsus, matuojamas Motiejaus koreliacijos koeficientas 
(MKK). 

Studentų auskultacinių garsų atpažinimo rezultatai buvo panašūs į 
spektrogramomis pagrįsto Histgradient mašininio modelio rezultatus, kai į 
modelį nepridėta GBT, nes nepastebėta reikšmingų skirtumų tarp NAG, 
SAK, DAK (p > 0,05 visoms klasėms). Mašininio mokymosi modelio Motie-
jaus koreliacijos koeficiento rezultatai buvo 0,471 (0,415–0,543), 0,587 
(0,522–0,654), 0,485 (0,422–0,552), lyginant su MFS Motiejaus koreliacijos 
koeficiento rezultatais 0,500 (–0,250–1,000), 0,500 (0,000–1,00), 0,500  
(–0,250–1,000), 0,500 (–0,250–1,000) atitinkamai NAG, SAK, DAK auskul-
tacinių garsų klasėse. 

SITS-40 Gausinio užterštumo lygmenyje tarp visų trijų auskultacinių 
garsų klasių atpažinimo buvo statistinis reikšmingumas: NAG, SAK, DAK 
(p = 0,035, p = 0,002, p = 0,000), mašininio mokymosi Histgradient rezultatų 
balai buvo 0,341 (0,288–0,422), 0,256 (0,180–0,374), 0,557 (0,491–0,621), 
palyginus su medicinos fakulteto studentų gautais rezultatais 0,500 (–0,250–
1,000), 0,500 (0,000–1,000), 0,000 (–0,250–1,000), 0,000 (–0,250–1,000) 
atitinkamai šiose garsų klasėse: NAG, SAK, DAK. Tuo tarpu medicinos 
fakulteto studentai parodė geresnius rezultatus atpažįstant normalius plaučių 
garsus (NAG) ir sausus karkalus (SAK), o MM Histgradient modelis, esant 
SITS-40 Gausinio užterštumo lygmeniui pranoko žmogiškųjų tiriamųjų 
subjektų (t. y. studentų) rezultatus geriau atpažįstant drėgnus auskultacinius 
karkalus (DAK).  

Esant Gausinio užterštumo lygmeniui SITS-20, studentai parodė statiš-
kai reikšmingai geresnius auskultacinių garsų atpažinimo rezultatus visose 
auskultacinių garsų klasėse, lyginant su Histgradient MM modeliu (p = 0,000 
NAG ir SAK klasėms, p = 0,009 DAK klasei), rezultatai buvo 0.116 (–0,013–
0,173), 0,001 (–0,095–0,255), 0,000 (–0,045–0,067), palyginti su studentų 
gautais rezultatais 0,500 (–0,250–1,000), 0,500 (0,000–1,000), 0,500 (–0,250– 
1,000), 0,500 (–0,250–1,000) atitinkamai NAG, SAK, DAK auskultacinių 
garsų klasėse. 
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Boxplot diagramoje (5.4.2 pav.) pavaizduotas Histgradient mašininio 
mokymo (MM) ir medicinos fakulteto studentų (MFS) specifiškumo palygi-
nimas trims auskultacinių garsų klasėms (NAG, SAK, DAK), esant skirtin-
giems Gauso baltojo triukšmo (GBT) lygiams. 

Kai į modelį nepridėta GBT, Histgradient modelio ir MFS specifiškumo 
pasiskirstymas NAG ir SAK auskultacinių garsų klasių atpažinimui, reikš-
mingai nesiskyrė (p > 0,05 abiem klasėms): Histgradient specifiškumas buvo 
0,471 (nuo 0,415 iki 0,543) ir 0,587 (nuo 0,522 iki 0,654) NAG ir SAK 
klasėms, o MFS specifiškumas 0,500 (nuo –0,250 iki 1,000) ir 0,500 (nuo 
0,000 iki 1,000) toms pačioms auskultacinių garsų klasėms. Tačiau drėgnų 
auskultacinių karkalų atveju Histgradient MM modelis parodė reikšmingai 
didesnį specifiškumą nei MF studentai (p = 0,000): Histgradient specifišku-
mas buvo 0,485 (nuo 0,422 iki 0,552), palyginus su MFS, kurių specifišku-
mas buvo 0,500 (nuo –0,250 iki 1,000). 

Esant Gauso baltojo triukšmo SITS-40 lygmeniui, reikšmingų skirtumų 
tarp abiejų lyginamųjų grupių pagal SAK auskultacinių garsų klasę nenu-
statyta (p > 0,05), tačiau reikšmingi skirtumai nustatyti atpažįstant normalius 
plaučių garsus ir drėgnus auskultacinius karkalus (p = 0,000, p = 0,024). 
Histgradient MM modelio NAG, SAK ir DAK auskultacinių garsų klasių 
atpažinimo specifiškumas atitinkamai buvo 0,341 (nuo 0,288 iki 0,422), 
0,256 (nuo 0,180 iki 0,374) ir 0,557 (nuo 0,491 iki 0,621), o MF studentų 
specifiškumas atpažįstant tas pačias auskultacinių garsų klases buvo 0,500 
(nuo –0,250 iki 1,000), 0,500 (nuo 0,000 iki 1,000) ir 0,000 (nuo –0,250 iki 
1,000). Histgradient modelis pasižymėjo statiškai reikšmingai geresniu 
specifiškumu atpažįstant drėgnus karkalus (DAK), bet statistiškai prastesniu 
rezultatu nepatologiniams plaučių garsams (NAG) esant Gauso baltojo 
triukšmo SITS-40 lygmeniui. 

Priešingai, esant Gauso baltojo triukšmo aukščiausiajam, SITS-20, lyg-
meniui, medicinos fakulteto studentai parodė statistiškai reikšmingai geres-
nius garsų atpažinimo specifiškumo rezultatus nei Histgradient MM modelis 
visoms garsų klasėms (p = 0,000 visoms klasėms). Histgradient modelio 
specifiškumas buvo 0,116 (–0,013–0,173), 0,001 (–0,095–0,255) ir 0,000  
(–0,045–0,067) NAG, SAK ir DAK auskultacinių garsų klasėms, lyginant su 
MF studentų minėtų auskultacinių klasių garsų atpažinimo specifiškumu 
0,500 (–0,250–1,000), 0,500 (0,000–1,000) ir 0,500 (–0,250–1,000). 
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Boxplot diagramoje (5.4.2 pav.) pavaizduotas Histgradient mašininio 
mokymo (MM) ir medicinos fakulteto studentų (MFS) specifiškumo palygi-
nimas trims auskultacinių garsų klasėms (NAG, SAK, DAK), esant skirtin-
giems Gauso baltojo triukšmo (GBT) lygiams. 

Kai į modelį nepridėta GBT, Histgradient modelio ir MFS specifiškumo 
pasiskirstymas NAG ir SAK auskultacinių garsų klasių atpažinimui, reikš-
mingai nesiskyrė (p > 0,05 abiem klasėms): Histgradient specifiškumas buvo 
0,471 (nuo 0,415 iki 0,543) ir 0,587 (nuo 0,522 iki 0,654) NAG ir SAK 
klasėms, o MFS specifiškumas 0,500 (nuo –0,250 iki 1,000) ir 0,500 (nuo 
0,000 iki 1,000) toms pačioms auskultacinių garsų klasėms. Tačiau drėgnų 
auskultacinių karkalų atveju Histgradient MM modelis parodė reikšmingai 
didesnį specifiškumą nei MF studentai (p = 0,000): Histgradient specifišku-
mas buvo 0,485 (nuo 0,422 iki 0,552), palyginus su MFS, kurių specifišku-
mas buvo 0,500 (nuo –0,250 iki 1,000). 

Esant Gauso baltojo triukšmo SITS-40 lygmeniui, reikšmingų skirtumų 
tarp abiejų lyginamųjų grupių pagal SAK auskultacinių garsų klasę nenu-
statyta (p > 0,05), tačiau reikšmingi skirtumai nustatyti atpažįstant normalius 
plaučių garsus ir drėgnus auskultacinius karkalus (p = 0,000, p = 0,024). 
Histgradient MM modelio NAG, SAK ir DAK auskultacinių garsų klasių 
atpažinimo specifiškumas atitinkamai buvo 0,341 (nuo 0,288 iki 0,422), 
0,256 (nuo 0,180 iki 0,374) ir 0,557 (nuo 0,491 iki 0,621), o MF studentų 
specifiškumas atpažįstant tas pačias auskultacinių garsų klases buvo 0,500 
(nuo –0,250 iki 1,000), 0,500 (nuo 0,000 iki 1,000) ir 0,000 (nuo –0,250 iki 
1,000). Histgradient modelis pasižymėjo statiškai reikšmingai geresniu 
specifiškumu atpažįstant drėgnus karkalus (DAK), bet statistiškai prastesniu 
rezultatu nepatologiniams plaučių garsams (NAG) esant Gauso baltojo 
triukšmo SITS-40 lygmeniui. 

Priešingai, esant Gauso baltojo triukšmo aukščiausiajam, SITS-20, lyg-
meniui, medicinos fakulteto studentai parodė statistiškai reikšmingai geres-
nius garsų atpažinimo specifiškumo rezultatus nei Histgradient MM modelis 
visoms garsų klasėms (p = 0,000 visoms klasėms). Histgradient modelio 
specifiškumas buvo 0,116 (–0,013–0,173), 0,001 (–0,095–0,255) ir 0,000  
(–0,045–0,067) NAG, SAK ir DAK auskultacinių garsų klasėms, lyginant su 
MF studentų minėtų auskultacinių klasių garsų atpažinimo specifiškumu 
0,500 (–0,250–1,000), 0,500 (0,000–1,000) ir 0,500 (–0,250–1,000). 
 

17
7 

 
5.

4.
3 

pa
v.

 B
ox

pl
ot

 d
ia

gr
am

oj
e 

pa
va

iz
du

ot
as

 H
is

tg
ra

di
en

t m
od

el
io

 ir
  

m
ed

ic
in

os
 st

ud
en

tų
 ja

ut
ru

m
o 

pa
ly

gi
ni

m
as

 tr
im

s g
ar

sų
 k

la
sė

m
s (

N
AG

, S
AK

, D
AK

) e
sa

nt
 tr

im
s G

BT
 ly

gi
am

s 
G

BT
 –

 G
au

so
 b

al
ta

sis
 tr

iu
kš

m
as

, H
ist

gr
ad

ie
nt

 –
 (

an
gl

. H
ist

og
ra

m
-b

as
ed

 G
ra

di
en

t 
Bo

os
tin

g 
Cl

as
sif

ic
at

io
n 

Tr
ee

) 
H

ist
og

ra
m

om
is 

pa
gr

įst
o 

gr
ad

ie
nt

in
io

 st
ip

rin
im

o 
kl

as
ifi

ka
ci

ni
o 

m
ed

ži
o 

m
aš

in
in

io
 m

ok
ym

os
i m

od
el

is,
 S

IT
S 

– 
sig

na
lo

 ir
 tr

iu
kš

m
o 

sa
nt

yk
is,

 N
A

G
 –

 n
or

m
al

us
 au

sk
ul

tu
ot

as
 

ga
rs

as
, D

A
K

 –
 d

rė
gn

i a
us

ku
lta

ci
ni

ai
 k

ar
ka

la
i, 

SA
K

 –
 sa

us
i a

us
ku

lta
ci

ni
ai

 k
ar

ka
la

i, 
M

FS
 –

 m
ed

ic
in

os
 fa

ku
lte

to
 st

ud
en

ta
i.

1,
0

0,
8

0,
6

0,
4

0,
2

0,
0

M
FS

 ja
ut

ru
m

o 
ba

la
i, 

N
AG

, k
ai

 n
ėr

a 
G

BT
H

is
tg

ra
di

en
t M

M
 ja

ut
ru

m
o 

ba
la

i, 
N

AG
, k

ai
 n

ėr
a 

G
BT

M
FS

 ja
ut

ru
m

o 
ba

la
i, 

SA
K,

 k
ai

 n
ėr

a 
G

BT
H

is
tg

ra
di

en
t M

M
 ja

ut
ru

m
o 

ba
la

i, 
SA

K,
 k

ai
 n

ėr
a 

G
BT

M
FS

 ja
ut

ru
m

o 
ba

la
i, 

D
A

K,
 k

ai
 n

ėr
a 

G
BT

H
is

tg
ra

di
en

t M
M

 ja
ut

ru
m

o 
ba

la
i, 

D
A

K,
 k

ai
 n

ėr
a 

G
BT

M
FS

 ja
ut

ru
m

o 
ba

la
i, 

N
AG

, G
BT

 S
IT

S-
40

H
is

tg
ra

di
en

t M
M

 ja
ut

ru
m

o 
ba

la
i, 

N
AG

, G
BT

 S
IT

S-
40

M
FS

 ja
ut

ru
m

o 
ba

la
i, 

SA
K,

 G
BT

 S
IT

S-
40

H
is

tg
ra

di
en

t M
M

 ja
ut

ru
m

o 
ba

la
i, 

SA
K,

 G
BT

 S
IT

S-
40

M
FS

 ja
ut

ru
m

o 
ba

la
i, 

D
A

K,
 G

BT
 S

IT
S-

40
H

is
tg

ra
di

en
t M

M
 ja

ut
ru

m
o 

ba
la

i, 
D

A
K,

 G
BT

 S
IT

S-
40

M
FS

 ja
ut

ru
m

o 
ba

la
i, 

N
AG

, G
BT

 S
IT

S-
20

H
is

tg
ra

di
en

t M
M

 ja
ut

ru
m

o 
ba

la
i, 

N
AG

, G
BT

 S
IT

S-
20

M
FS

 ja
ut

ru
m

o 
ba

la
i, 

SA
K,

 G
BT

 S
IT

S-
20

H
is

tg
ra

di
en

t M
M

 ja
ut

ru
m

o 
ba

la
i, 

SA
K,

 G
BT

 S
IT

S-
20

M
FS

 ja
ut

ru
m

o 
ba

la
i, 

D
A

K,
 G

BT
 S

IT
S-

20
H

is
tg

ra
di

en
t M

M
 ja

ut
ru

m
o 

ba
la

i, 
D

A
K,

 G
BT

 S
IT

S-
20

H
is

tg
ra

di
en

t m
aš

in
in

io
 m

od
el

io
 ja

ut
ru

m
o 

ve
rt

ės
 ly

gi
na

m
os

 s
u 

m
ed

ic
in

os
 s

tu
de

nt
ų 

re
zu

lt
at

ai
s 

ki
ek

vi
en

ai
 g

ar
so

 k
la

se
i, 

 
es

an
t t

ri
m

s 
sk

ir
ti

ng
ie

m
s 

G
au

si
ni

o 
ga

rs
o 

už
te

rš
tu

m
o 

ly
gi

am
s

1,
0

0,
8

0,
6

0,
4

0,
2

0,
0

M
FS

 ja
ut

ru
m

o 
ba

la
i, 

N
AG

, k
ai

 n
ėr

a 
G

BT
H

is
tg

ra
di

en
t M

M
 ja

ut
ru

m
o 

ba
la

i, 
N

AG
, k

ai
 n

ėr
a 

G
BT

M
FS

 ja
ut

ru
m

o 
ba

la
i, 

SA
K,

 k
ai

 n
ėr

a 
G

BT
H

is
tg

ra
di

en
t M

M
 ja

ut
ru

m
o 

ba
la

i, 
SA

K,
 k

ai
 n

ėr
a 

G
BT

M
FS

 ja
ut

ru
m

o 
ba

la
i, 

D
A

K,
 k

ai
 n

ėr
a 

G
BT

H
is

tg
ra

di
en

t M
M

 ja
ut

ru
m

o 
ba

la
i, 

D
A

K,
 k

ai
 n

ėr
a 

G
BT

M
FS

 ja
ut

ru
m

o 
ba

la
i, 

N
AG

, G
BT

 S
IT

S-
40

H
is

tg
ra

di
en

t M
M

 ja
ut

ru
m

o 
ba

la
i, 

N
AG

, G
BT

 S
IT

S-
40

M
FS

 ja
ut

ru
m

o 
ba

la
i, 

SA
K,

 G
BT

 S
IT

S-
40

H
is

tg
ra

di
en

t M
M

 ja
ut

ru
m

o 
ba

la
i, 

SA
K,

 G
BT

 S
IT

S-
40

M
FS

 ja
ut

ru
m

o 
ba

la
i, 

D
A

K,
 G

BT
 S

IT
S-

40
H

is
tg

ra
di

en
t M

M
 ja

ut
ru

m
o 

ba
la

i, 
D

A
K,

 G
BT

 S
IT

S-
40

M
FS

 ja
ut

ru
m

o 
ba

la
i, 

N
AG

, G
BT

 S
IT

S-
20

H
is

tg
ra

di
en

t M
M

 ja
ut

ru
m

o 
ba

la
i, 

N
AG

, G
BT

 S
IT

S-
20

M
FS

 ja
ut

ru
m

o 
ba

la
i, 

SA
K,

 G
BT

 S
IT

S-
20

H
is

tg
ra

di
en

t M
M

 ja
ut

ru
m

o 
ba

la
i, 

SA
K,

 G
BT

 S
IT

S-
20

M
FS

 ja
ut

ru
m

o 
ba

la
i, 

D
A

K,
 G

BT
 S

IT
S-

20
H

is
tg

ra
di

en
t M

M
 ja

ut
ru

m
o 

ba
la

i, 
D

A
K,

 G
BT

 S
IT

S-
20

H
is

tg
ra

di
en

t m
aš

in
in

io
 m

od
el

io
 ja

ut
ru

m
o 

ve
rt

ės
 ly

gi
na

m
os

 s
u 

m
ed

ic
in

os
 s

tu
de

nt
ų 

re
zu

lt
at

ai
s 

ki
ek

vi
en

ai
 g

ar
so

 k
la

se
i, 

 
es

an
t t

ri
m

s 
sk

ir
ti

ng
ie

m
s 

G
au

si
ni

o 
ga

rs
o 

už
te

rš
tu

m
o 

ly
gi

am
s



178178 

Boxplot diagramoje (5.4.3 pav.) pavaizduotas Histgradient mašininio 
mokymosi (MM) ir medicinos fakulteto (MF) studentų jautrumo pasiskirsty-
mas atpažįstant tris auskultacinių plaučių garsų klases (NAG, SAK, DAK), 
esant skirtingiems Gauso baltojo triukšmo (GBT) lygiams.  

Kai į modelį nepridėta Gauso baltojo triukšmo, Histgradient MM mode-
lio ir medicinos fakulteto studentų jautrumo, atpažįstant auskultacinius garsus, 
pasiskirstymai reikšmingai nesiskyrė tik vienoje auskultacinių plaučių garsų 
klasėje, tai yra atpažįstant drėgnus karkalus (DAK) (p > 0,05). Tačiau statis-
tiškai reikšmingas skirtumas yra tarp studijos grupių jautrumo, atpažįstant 
normalius auskultacinius garsus (NAG) ir sausus karkalus (SAK) (p = 0,030 
ir p = 0,000). MM Histgradient modelio jautrumas buvo 0,471 (415–0,543) 
normalių auskultacinių garsų (NAG), 0,587 (0,522–0,654) sausų auskulta-
cinių karkalų (SAK) ir 0,485 (0,422–0,552) drėgnų auskultacinių karkalų 
(DAK) garsų klasėse, lyginant su MF studentų jautrumu 0,500 (–0,250–
1,000), 0,500 (0,000–1,000) ir 0,500 (–0,250–1,000) tose pačiose garsų atpa-
žinimo klasėse. 

Esant Gausinio užterštumo vidutiniam lygmeniui, SITS-40, reikšmingų 
skirtumų tarp abiejų tiriamųjų grupių jautrumo identifikuojant DAK auskul-
tacinę plaučių garsų klasę nenustatyta (p > 0,05), tačiau reikšmingi skirtumai 
nustatyti atpažįstant normalius auskultacinius garsus ir sausus auskultacinius 
karkalus (p = 0,000 abiem klasėms). Histgradient MM modelio jautrumo 
pasiskirstymas identifikuojant NAG, SAK ir DAK auskultacinius plaučių 
garsus atitinkamai buvo 0,341 (0,288–0,422), 0,256 (0,180–0,374) ir 0,557 
(0,491–0,621), o MF studentų jautrumas atpažįstant plaučių garsus tose 
pačiose auskultacinių garsų klasėse buvo 0,500 (–0,250–1,000), 0,500 
(0,000–1,000) ir 0,000 (–0,250–1,000). 

MM Histgradient modelio jautrumas, esant SITS-40 Gausinio užterštu-
mo lygmeniui, pranoko žmogiškųjų tiriamųjų subjektų (t. y. studentų) jautru-
mą atpažįstant nepatologinius plaučių garsus (NAG). MM modelio ir 
studentų jautrumas tolygus identifikuojant drėgnus auskultacinius karkalus 
(DAK) ir statistiškai prastesnis jautrumas, atpažįstant sausus auskultacinius 
karkalus (SAK.) 

Esant Gauso užterštumo aukščiausiam lygmeniui, SITS-20, MF 
studentai parodė statistiškai reikšmingai geresnius jautrumo rezultatus nei 
Histgradient MM modelis drėgnų auskultacinių karkalų (DAK) atpažinimo 
atžvilgiu (p = 0,000). Tačiau statistiškai reikšmingo skirtumo tarp abiejų 
lyginamųjų grupių nebuvo, žvelgiant į NAG ir SAK plaučių klasių 
identifikavimą (p > 0,05). MM Histgradient modelio jautrumas buvo 0,116 
(–0,013–0,173), 0,001 (–0,095–0,255) ir 0,000 (–0,045–0,067) NAG, SAK ir 
DAK auskultacinių garsų klasėms, tuo tarpu MF studentų jautrumas 0,500 (–
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Boxplot diagramoje (5.4.3 pav.) pavaizduotas Histgradient mašininio 
mokymosi (MM) ir medicinos fakulteto (MF) studentų jautrumo pasiskirsty-
mas atpažįstant tris auskultacinių plaučių garsų klases (NAG, SAK, DAK), 
esant skirtingiems Gauso baltojo triukšmo (GBT) lygiams.  

Kai į modelį nepridėta Gauso baltojo triukšmo, Histgradient MM mode-
lio ir medicinos fakulteto studentų jautrumo, atpažįstant auskultacinius garsus, 
pasiskirstymai reikšmingai nesiskyrė tik vienoje auskultacinių plaučių garsų 
klasėje, tai yra atpažįstant drėgnus karkalus (DAK) (p > 0,05). Tačiau statis-
tiškai reikšmingas skirtumas yra tarp studijos grupių jautrumo, atpažįstant 
normalius auskultacinius garsus (NAG) ir sausus karkalus (SAK) (p = 0,030 
ir p = 0,000). MM Histgradient modelio jautrumas buvo 0,471 (415–0,543) 
normalių auskultacinių garsų (NAG), 0,587 (0,522–0,654) sausų auskulta-
cinių karkalų (SAK) ir 0,485 (0,422–0,552) drėgnų auskultacinių karkalų 
(DAK) garsų klasėse, lyginant su MF studentų jautrumu 0,500 (–0,250–
1,000), 0,500 (0,000–1,000) ir 0,500 (–0,250–1,000) tose pačiose garsų atpa-
žinimo klasėse. 

Esant Gausinio užterštumo vidutiniam lygmeniui, SITS-40, reikšmingų 
skirtumų tarp abiejų tiriamųjų grupių jautrumo identifikuojant DAK auskul-
tacinę plaučių garsų klasę nenustatyta (p > 0,05), tačiau reikšmingi skirtumai 
nustatyti atpažįstant normalius auskultacinius garsus ir sausus auskultacinius 
karkalus (p = 0,000 abiem klasėms). Histgradient MM modelio jautrumo 
pasiskirstymas identifikuojant NAG, SAK ir DAK auskultacinius plaučių 
garsus atitinkamai buvo 0,341 (0,288–0,422), 0,256 (0,180–0,374) ir 0,557 
(0,491–0,621), o MF studentų jautrumas atpažįstant plaučių garsus tose 
pačiose auskultacinių garsų klasėse buvo 0,500 (–0,250–1,000), 0,500 
(0,000–1,000) ir 0,000 (–0,250–1,000). 

MM Histgradient modelio jautrumas, esant SITS-40 Gausinio užterštu-
mo lygmeniui, pranoko žmogiškųjų tiriamųjų subjektų (t. y. studentų) jautru-
mą atpažįstant nepatologinius plaučių garsus (NAG). MM modelio ir 
studentų jautrumas tolygus identifikuojant drėgnus auskultacinius karkalus 
(DAK) ir statistiškai prastesnis jautrumas, atpažįstant sausus auskultacinius 
karkalus (SAK.) 

Esant Gauso užterštumo aukščiausiam lygmeniui, SITS-20, MF 
studentai parodė statistiškai reikšmingai geresnius jautrumo rezultatus nei 
Histgradient MM modelis drėgnų auskultacinių karkalų (DAK) atpažinimo 
atžvilgiu (p = 0,000). Tačiau statistiškai reikšmingo skirtumo tarp abiejų 
lyginamųjų grupių nebuvo, žvelgiant į NAG ir SAK plaučių klasių 
identifikavimą (p > 0,05). MM Histgradient modelio jautrumas buvo 0,116 
(–0,013–0,173), 0,001 (–0,095–0,255) ir 0,000 (–0,045–0,067) NAG, SAK ir 
DAK auskultacinių garsų klasėms, tuo tarpu MF studentų jautrumas 0,500 (–
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0,250–1,000), 0,500 (0,000–1,000) ir 0,500 (–0,250–1,000) toms pačioms 
auskultacinių garsų klasėms identifikuoti. 

IŠVADOS 

1. Mašininio mokymosi modeliai bei medicinos studentai gali būti išmokyti 
identifikuoti tris auskultacinių plaučių garsų klases, per trumpą laiką, 
tačiau su skirtingais tikslumo lygiais.  

2. Spektrogramų pagrindu sukurti mašininio mokymo modeliai parodė žy-
miai geresnį tikslumą lyginant su skalograminiais mašininio mokymosi 
modeliais. 

3. Tiek medicinos studentus, tiek MM modelių gebėjimus atpažinti plaučių 
garsus paveikė padidėjęs GBT lygis, o mašininio mokymosi modeliai 
dažniau buvo paveikiami didžiausio garso užterštumo (SITS-20) lyg-
mens, kuriame gebėjimas atpažinti normalius plaučių garsus, drėgnus ir 
sausus karkalus reikšmingai sumažėjo. Tuo tarpu medicinos studentų 
drėgnų karkalų atpažinimo tikslumą reikšmingai paveikė vidutinio lygio 
GBT užterštumas (SITS-40). 

4. Mašininio mokymosi Histgradient modelis, esant SITS-40 Gausinio 
užterštumo lygmeniui, pranoko žmogiškųjų tiriamųjų subjektų (t. y. me-
dicinos fakulteto studentų) rezultatus atpažįstant drėgnus auskultacinius 
karkalus didesniu Motiejaus koreliacijos koeficientu, todėl šis MM 
modelis gali būti pritaikomas kaip diagnostinis pagalbininkas esant 
vidutinio garso užterštumo lygmeniui. 

PRAKTINĖS REKOMENDACIJOS 

1. Visi gydytojai, slaugytojai, rezidentai ir medicinos studentai turėtų žinoti 
savo diagnostinį tikslumą pagal tam tikrą plaučių garsų klasę ir triukšmo 
lygį jų darbo aplinkoje. 

2. Visi būsimi mašininio mokymosi modeliai turėtų būti kuriami ir verti-
nami aplinkos triukšmo sąlygoms. 

3. Histgradient stiprinantysis mašininio mokymosi modelis turėtų būti 
toliau tyrinėjamas ir plėtojamas, siekiant padėti identifikuoti drėgnų 
karkalų grupei priskiriamus plaučių garsus, esant garso užterštumo sąly-
goms. 
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4. Visi modeliai, naudojami kaip pagalbinė priemonė plaučių garsų diag-
nostikoje klinikiniame sveikatos priežiūros specialistų darbe, turėtų būti 
vertinami pagal skirtingus aplinkos triukšmo lygius. 

5. Integruojant mašininio mokymosi modelį, kaip diagnostikos pagalbi-
ninką sveikatos priežiūros specialistui, atliekančiam auskultaciją, visuo-
met reikėtų įvertinti ir atsižvelgti į specialisto auskultacijos testo rezulta-
tus ir jautrumą tam tikram konkrečiam garsui, esant tam tikroms aplinkos 
triukšmo sąlygoms. Taipogi reikėtų įvertinti konkretaus naudojamo 
mašininio mokymosi modelio darbo rezultatus, jo diagnostinį jautrumą 
tomis pačiomis sąlygomis, tuomet pritaikyti mašininį modelį turintį ge-
resnį jautrumą kaip pagalbinę priemonę konkretaus sveikatos specialisto 
auskultacijų interpretavimo asistavime.  
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APPENDIX 

Annex 1 

PACIENTO IŠTYRIMO ANKETA 

Data  
Suteiktasis tiriamojo kodas  
Tiriamąjį apibūdinantys dokumentiniai duomenys 
Lytis  Vyras 

 Moteris 
Amžius (m.)  

Ūgis (cm)  Svoris (kg)  
Diagnozė (TLK-10-AM kodas) Pagrindinė  

Gretutinė  
Komplikacijos  

Anamnezės ypatumai (turintys įtakos plaučių auskultaciniams garsams) 
Persirgtos ligos  Plaučių 

_____________________ 
_____________________ 
 Širdies 

_____________________ 
_____________________ 

Žalingi įpročiai  Rūko 
 Nerūko 
 Neberūko ______ metų 

Objektyvus ištyrimas 
Dusulys  Taip 

 Ne 
Kvėpavimo 
dažnis (k./min.) 

 

Karkalai  Sausi 
 Drėgni 
 Mišrūs 

Periferinės 
edemos 

 Yra 
 Nėra 

SpO2 (proc.)  AKS (mmHg)  
ŠSD (k./min.)  

Instrumentinių ir laboratorinių tyrimų rezultatai 
BKT  Anemija 

 Uždegiminis procesas 
(bakterinis) 
 Kita 

_____________________ 
_____________________ 

CRB  
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Plaučių 
rentgenologiniai 
pakitimai 

 Norma 
 Pneumonija _________ 
 Bronchitas 
 Peribronchiniai 

pakitimai 
 Kita 

_____________________ 
_____________________ 

D-dimerai  
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Plaučių KT 
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Penktas taškas  Šeštas taškas  
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