## MATHEMATICS TOPICS FOR THE ENTRANCE TEST <br> (Only for BSc HEALTH PSYCHOLOGY)

Derivatives; Definite Integrals (application of integrals); Percentages, probability (definition, formulas of sum and multiplication of probabilities, mean (mathematical expectation), median and mode).

Systems of linear equations, quadratic equations, simplification of algebraic expressions; Simplification of trigonometric expressions, arithmetic, and geometric progressions; Ratios, analysis of functions.

## LIST of FORMULAS

$a^{2}-b^{2}=(a-b) \cdot(a+b) ;(a \pm b)^{2}=a^{2} \pm 2 a b+b^{2} ; a^{3} \pm b^{3}=(a \pm b) \cdot\left(a^{2} \mp a \cdot b+b^{2}\right) ;(a \pm b)^{3}=a^{3} \pm 3 \cdot a^{2} \cdot b+3 \cdot a \cdot b^{2} \pm b^{3}$
$\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0 \rightarrow x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} ; x_{1}+x_{2}=-\frac{b}{a} ; x_{1} \cdot x_{2}=\frac{c}{a}$

## Progressions:

| Aritmetic progression | Geometric progression |
| :--- | :--- |
| $\mathrm{a}_{\mathrm{n}}=\mathrm{a}_{1}+(\mathrm{n}-1) \cdot \mathrm{d} ;$ | $\mathrm{b}_{\mathrm{n}}=\mathrm{b}_{1} \cdot \mathrm{q}^{\mathrm{n}-1}$ |
| $\mathrm{~S}_{\mathrm{n}}=\frac{1}{2} \cdot\left(\mathrm{a}_{1}+\mathrm{a}_{\mathrm{n}}\right) \cdot \mathrm{n}=\frac{1}{2} \cdot\left(2 \mathrm{a}_{1}+(\mathrm{n}-1) \cdot \mathrm{d}\right) \cdot \mathrm{n}$ | $S_{n}=\frac{b_{1} \cdot\left(q^{n}-1\right)}{q-1}$ |
| $\mathrm{a}_{1}-$ first number, $\mathrm{a}_{\mathrm{n}}-\mathrm{n}$-th number; $\mathrm{d}-$ difference | $\mathrm{b}_{1}-$ first number, $\mathrm{b}_{\mathrm{n}}-\mathrm{n}$-th number; $\mathrm{q}-$ common ratio |

## Trigonometry

$\sin 2 x=2 \cdot \sin x \cdot \cos x ; \cos 2 x=\cos ^{2} x-\sin ^{2} x ; \sin ^{2} x+\cos ^{2} x=1 ; \operatorname{tg} 2 x=\frac{\sin 2 x}{\cos 2 x}$

## Derivatives

$c^{\prime}=0 .(c u)^{\prime}=c \cdot u^{\prime} .\left(\frac{u}{c}\right)^{\prime}=\frac{u^{\prime}}{c}$ if $c \neq 0 .(u \pm v)^{\prime}=u^{\prime} \pm v^{\prime}$.
$(u \cdot v)^{\prime}=u^{\prime} \cdot v+u \cdot v^{\prime} .\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} \cdot v-u \cdot v^{\prime}}{v^{2}}$ if $v \neq 0 . g(f(x))=g^{\prime}(f(x)) \cdot f(x)$
$\left(\mathrm{x}^{\alpha}\right)^{\prime}=\alpha \mathrm{x}^{\alpha-1} ;\left(\mathrm{e}^{\mathrm{x}}\right)^{\prime}=\mathrm{e}^{\mathrm{x}} ;\left(\mathrm{a}^{\mathrm{x}}\right)^{\prime}=\mathrm{a}^{\mathrm{x}} \ln \mathrm{a} ;(\ln \mathrm{x})^{\prime}=\frac{1}{\mathrm{x}} ;(\sin \mathrm{x})^{\prime}=\cos \mathrm{x} ;(\cos \mathrm{x})^{\prime}=-\sin \mathrm{x}$.

## Integrals

$\int c f(x) d x=c \int f(x) d x ; \int(f(x) \pm g(x)) d x=\int f(x) d x \pm \int g(x) d x ;$
$\int \mathrm{dx}=\mathrm{x}+\mathrm{C} ; \quad \int \mathrm{x}^{\alpha} \mathrm{dx}=\frac{\mathrm{x}^{\alpha+1}}{\alpha+1}+\mathrm{C} \quad(\alpha \neq-1) ; \quad \int \frac{\mathrm{dx}}{\mathrm{x}}=\ln |\mathrm{x}|+C ; \quad \int \mathrm{e}^{\mathrm{x}} \mathrm{dx}=\mathrm{e}^{\mathrm{x}}+C ;$
$\int_{a}^{b} f(x) d x=\left.F(x)\right|_{a} ^{b}=F(b)-F(a)$.
Area under a curve of $f(x)$ in interval $(a ; b)$ Area $=\int_{a}^{b} f(x) d x$

## Probability:

Definition: $P(A)=\frac{m}{n}$
Multiplication rule of probabilities for independent events: $P(A \cap B)=P(A) \cdot P(B)$.
Addition rule of probabilities for mutually exclusive events: $P(A \cup B)=P(A)+P(B)$.
Mathematical expectation or mean (EX):
$E X=\frac{x_{1} \cdot m_{1}+x_{2} \cdot m_{2}+\cdots+x_{n} \cdot m_{n}}{n}$ or $E X=x_{1} \cdot p_{1}+x_{2} \cdot p_{2}+\cdots+x_{n} \cdot p_{n}$

