Options
Nano-hydroxyapatite
Petrauskaitė, Odeta | Kauno technologijos universitetas |
Liesienė, Jolanta | Kauno technologijos universitetas |
Gomes, Pedro de Sousa | University of Porto, Porto, Portugal |
Costa, Maria Elisabete Jorge Vieira da | University of Aveiro, Portugal |
Date Issued |
---|
2012-05-12 |
Nowadays one of the most promising approaches in bone tissue engineering is processing of highly porous polymer-based three-dimensional scaffolds which serve as frameworks for bone tissue in-growth. In order to increase the bioactivity or/and mechanical properties of the scaffold usually bioceramics are embedded into the polymer matrix. The present work explores nanohydroxyapatite/ cellulose scaffolds for bone tissue regeneration in bone cavities. The composite scaffolds were prepared by reinforcing a gel of regenerated cellulose with nanohydroxyapatite. A highly porous structure of the matrix was obtained by freeze-drying method. It was found out that the porous structure of the composite depended on the solvent which was in its discontinuous phase before freeze-drying, as well as on morphology of hydroxyapatite nanoparticles. The pore size of prepared matrix ranged from nanometric to micron scale, thus confirming cell adhesion, proliferation and space for vascularization. Biomimetic mineralization was performed in a simulated body fluid (pH 7.4) at 37 °C. Scaffolds bioactivity was substantiated by appearance of bone-like apatite onto the surface. Mass increase measurements showed that the mass percentage of hydroxyapatite was approx. 11 %. Furthermore, the interaction of MG-63 human osteoblastic-cells with novel scaffolds was investigated. The results showed that composites were not cytotoxic and induced the growth of the seeded osteoblastic-like cells. Attained results confirm the suitability of prepared scaffolds for bone tissue regeneration in vivo.